
Design and Implementation

of Support for Pipes in Condor

Master's Thesis

P. van Sebille

Supervision:

Delft University of Technology

Faculty of Technical Mathematics and Informatics

Operating Systems and Distributed Systems Group

P.O. Box 356, 2600 AJ Delft, The Netherlands

prof. dr I.S. Herschberg

ir dr D.H.J. Epema

drs J.W.J. Heijnsdijk

ir J.F.C.M. de Jongh

National Institute for Nuclear Physics and High-Energy Physics

P.O. Box 41882, 1009 DB Amsterdam, The Netherlands

dr R. van Dantzig (SMC)

August 1994

1

Contents

Preface iii

1 Introduction 1

2 Introduction to Condor 5

2.1 Submitting a Job : 7

2.2 Remote Execution : 9

2.3 Checkpointing : 10

3 The Design of Condor Support for Multiple-Process Jobs 13

3.1 The Model of Multiple-Process Jobs : 13

3.2 The Speci�cation of Multiple-Process Jobs : 15

3.3 Process Structures : 17

3.4 The Shadow : 20

3.5 The Startd : 22

3.6 The Starter : 23

3.6.1 Starting a Job : 25

3.6.2 Checkpointing a Job : 26

3.6.3 Termination of a User Process : 26

3.7 Summary of Changes : 27

4 The Design of Condor support for Pipe Jobs 29

4.1 The Model and Assumptions for Pipe Jobs : : : : : : : : : : : : : : : : : : : 30

4.2 The Speci�cation of Pipe Jobs : 31

4.3 Process Structures : 35

4.4 Setting up the Pipes : 36

4.5 The Runtime Model of Pipe Jobs : 37

4.5.1 Standard Files : 38

4.5.2 Open System Call : 38

4.5.3 Read and Write System Calls : 40

4.5.4 Other System Calls : 42

4.6 Serving Remote System Calls for Pipe Jobs : : : : : : : : : : : : : : : : : : : 43

4.7 Summary of Changes : 44

i

CONTENTS

5 The Design of Checkpointing Pipe Jobs 45

5.1 The Centralised Approach : 46

5.2 The Distributed Approach : 47

5.3 A Checkpoint/Restart Mechanism for Pipe Jobs: the Centralised Approach : 48

5.3.1 The Checkpoint Algorithm : 49

5.3.2 The Rollback Algorithm : 54

6 Implementation 57

6.1 Multiple-Process Jobs : 57

6.1.1 The Shadow : 57

6.1.2 The Starter : 60

6.2 Pipe Jobs : 61

6.2.1 The Shadow : 61

6.2.2 The Starter : 63

6.2.3 The Condor Library : 66

6.2.4 System Calls : 67

6.3 Miscellaneous : 67

6.3.1 JobQueue : 67

6.3.2 Condor submit : 68

6.3.3 Notifying the User : 68

7 Tests and Results 71

7.1 Jobs tested under the Pipe Version of Condor : : : : : : : : : : : : : : : : : : 72

7.2 Performance of Pipe Jobs : 74

7.3 Overhead of Condor : 76

7.4 Workload of Pipe Jobs : 77

8 Conclusions 81

Bibliography 85

A Process Structures 87

B State Transition Diagram of the Starter 89

C Running GNU's GREP Utility 93

ii

Preface

This report is the result of a six-month graduating term for the Operating Systems and Dis-

tributed Systems group of the Technical University of Delft. This assignment was performed

within the Computer System Group of NIKHEF (National Institute for Nuclear Physics and

High-Energy Physics) under the supervision of R. van Dantzig (Spin Muon Collaboration),

and D.H.J. Epema and J.F.C.M. de Jongh (Technical University of Delft).

I would like to thank Maarten Litmaath for the interest he showed in my project and also for

his help with running a test job at CERN

1

.

I would like to thank Ronald Boontje for his help and advise on the design issues of my

project, Tom Ploegmakers and Bas Tummers for answering numerous questions on unix, and

of course all the other members of the CSG for the wonderful time I had during my stay at

NIKHEF.

I would like to thank Miron Livny and Mike Litzkow for the discussions we had on Condor,

and Mike Litzkow also for always �nding the time to answer my questions on the Condor

system.

I would like to thank Dick Epema, who provided me with this assignment, together with Jan

de Jongh, for their supervision and their many valuable comments. Finally, I would like to

thank Ren�e van Dantzig for his supervision, guidance and help during my graduation term.

Peter van Sebille, Amsterdam, august 1994.

1

Centre Europ�een pour la Recherche Nucl�eaire.

iii

Chapter 1

Introduction

Condor is a distributed batch system that allows for batch processing in a cluster of unix

workstations. The main goal of Condor is to utilise machines that otherwise would be idle.

Users may submit jobs which will be queued by Condor and scheduled among available

machines. From the moment of submission until the job's completion, Condor will host

the job. This is completely transparent to the user. For example, the user does not know,

and possibly does not care, where his jobs are run. Condor will pick a machine from a pool of

available machines to run the user's job. If necessary, Condor moves a running job from one

machine to another. Condor is developed at the University of Wisconsin, Madison, U.S.A.,

[2],[3],[11],[12],[13],[14],[15].

The type of job that is suitable for Condor is long-running, computing intensive processes

that preferably do not much I/O. Although this is not a requirement for running a job with

Condor, short-running jobs gain less due to the overhead involved.

Work is in progress in Wisconsin and therefore there are di�erent versions of Condor. An

important one is the o�cial release, version 4.1.3b, that can be obtained using anonymous ftp

to ftp.cs.wisc.edu. The type of job that is used in the o�cial version consists of one process

only. We shall refer to such a job as a single-process job. One limitation of this type is very

clear: jobs may only consist of a single process. This excludes a variety of jobs that require

more than one process, such jobs are referred to as multiple-process job. Going from single-

process jobs to multiple-process jobs is de�nitely a step forward. However, whenever Condor

is running a job on a di�erent machine than the machine from which the job is submitted,

I/O is redirected back to the submitting machine. For a single-process job there can be no

other way, the process probably needs input and is likely to produce output, which must be

stored in a �le. However, for a multiple-process job, the output of one process may be the

input of another process in the job. In such a case, we would like to pipe these data from

one process to another. What we then have is what we will call a pipe job. In Figure 1.1, an

1

Introduction

O
U
T
P
U
T

I
N
P
U
T

P3P2P1

PipeFile File

Figure 1.1: Example of a pipe job.

example of a pipe job is shown. The �rst process reads its input from a �le and its output

is piped to the second process. The data are piped from the second process to the third and

�nally, the data are written to a �le.

Piping already exists in unix shells. The three processes in the previous example could be

started in such a shell with the next command:

p1 < input | p2 | p3 > output

What we see here, in unix terminology, is that these three processes are expected to read

something from stdin and write something to stdout . The token < (it implies �le redirection)

is used to denote that whenever process p1 reads from stdin it actually reads �le "input".

This is transparent for process p1, all it does is reading from stdin and it does not know that

the shell maps a �le to it. Similar, token > means that stdout of process p3 is redirected to

a �le. The token j (the pipe symbol) denotes that stdout of the �rst process is mapped on

stdin of the second process (again transparent for both processes). The data are said to be

piped from the �rst to the second process and from the second to the third.

What we want is to extend Condor with a piping facility. This piping facility should not

only support a pipe mechanism described above, that is, piping from stdout to stdin, but

also a mechanism that allows for a mapping of �les on the ends of pipes

1

. Mapping �les on

the ends of pipes is a feature not found in any shell programming, but it is a requirement

for a large collection of jobs at CERN. These jobs consist of Fortran programs that analyse

data, either gathered from experiments or generated by simulation, and these programs make

up a pipeline. Typical about these programs is that they use hard-coded �lenames (usually

something like fort.3 or fort.79). To take full advantage of pipes, we should redirect the data

that are written to a �le, to the end of pipe. This requires a mechanism that will map the

name of a �le on the end of a pipe. We will design a piping facility that allows these jobs to

run with Condor without rewriting a single line of source code of any of the programs.

We already discussed one version of the Condor system: the o�cial release. Another im-

portant version is a test version at Wisconsin; we will refer to it as wisc version

2

. The wisc

1

Note that this not the same as mapping a �le name on stdin as in �le redirection.

2

This version is known by the tag: Sparc Sunos4 1:A.

2

Introduction

Pipe Pvm

Wisc

Official

Cern

Figure 1.2: Relationship between Condor versions.

version supports more types of jobs than the traditional single process job. It also has quite

some support for multiple-process jobs, however, one piece of the software (Shadow) is not

yet prepared to handle this support. Also, the designers at Wisconsin already anticipated

pipe jobs and provided the basic data structures and operations on them. Derived from this

wisc version was a version which we will call the pvm (Parallel Virtual Machines) version,

because it supports pvm jobs. We shall not discuss pvm here; all we need to know is that

a pvm job consists of multiple processes as well as pipe jobs. Finally, there is a version of

Condor at CERN, which will be called the cern version. This version is derived from (an

early) o�cial release of Condor and was the �rst attempt to implement pipe jobs.

As a basis for my graduation assignment, I used the wisc version. There could have been

only doubt on whether to use the wisc or the pvm version. The wisc version is the way to

go for future Condor extensions since it is a better implementation than the o�cial release

(parts are completely rewritten in C++

3

). The reason to use the wisc version is that I already

understood what was missing in it by the time I received the pvm version. So, instead of also

understanding the pvm version and removing redundant parts, I decided to extend the wisc

version. Just for the record, I'll call my version the pipe version. The relationship between

all the mentioned Condor version is showed in Figure 1.2.

We have split up the assignment in two parts. First we will extend the wisc version so that

it fully supports multiple-process jobs. Next, the pipe functionality will be implemented. It

is not our intention to make two versions out of this. The �rst stage is merely a basis for the

actual pipe version. Chapter 2 will give a brief introduction to Condor, in chapter three and

four we will discuss the design issues for multiple-process jobs and pipe jobs respectively.

Checkpointing a multiple-process job is merely checkpointing the individual processes. Check-

pointing pipe jobs is not as easy due to communication dependencies, these are the pipes. We

designed an algorithm for checkpointing a pipe job. Unfortunately, there was no time left to

3

Originally, Condor was implemented in K&R C.

3

Introduction

implement it. Checkpointing pipe jobs will be discussed in chapter 5. The implementation of

the pipe version is the subject of chapter 6. In chapter 7 we show some results from testing

the pipe version. Finally, in chapter 8 we will present our conclusions.

4

Chapter 2

Introduction to Condor

This chapter gives a brief overview of the Condor system. We will not discuss all details but

restrict ourselves to the subjects that are necessary for this report; these are: submitting a

job, remote execution and checkpointing.

In a pool of unix workstations, Condor monitors the activity of participating machines.

When a machine is determined idle, it is added to a list of processors. These idle machines

are scheduled among available user jobs. The user may submit jobs which are stored in the

JobQueue on the submitting machine. In Figure 2.1 such a pool is depicted.

On each machine run two Condor daemons called the Schedd (scheduler daemon) and the

Startd (starter daemon). One machine in the pool is con�gured to be the Central Manager ,

on which two extra daemons run. For this paper, the Central Manager is of less interest, so

these two extra daemons will be addressed to as the Central Manager. After a con�gured

period of time, a Schedd will negotiate with the Central Manager on behalf of one of the jobs

it has in its JobQueue . The Central Manager decides if and on which machine this job may

run. The policies for the Schedd to pick one of the user jobs from its JobQueue and for the

Central Manager to select an idle machine, are not considered here. All we need to know is

that the Central Manager will return the name of the idle machine when a request is granted.

The Schedd will request the Startd on this machine (called the remote host or the execution

machine) to start the job. Only if the remote host has enough swap and disk space to run the

job, the request is granted by the Startd. Finally, the job is started on the remote machine.

When the job runs remote, it is periodically checkpointed, that is, the state of the job is

captured and stored in a checkpoint �le, which is used to restart the job from on a di�erent

machine. There are two reasons Condor needs to checkpoint a job periodically. First, Condor

guarantees that a job eventually will complete. For long-running jobs this is essential. Suppose

that a machine on which we run a job that takes for about a month of CPU time to complete

its computation crashes on the last day. This means that a month of CPU time is wasted

5

Introduction to Condor

Central
Manager

Schedd Startd

Startd

Schedd

Local Network

JobQueue

JobQueue

JobQueue

JobQueue

Schedd

Startd

Startd Schedd

Local Host

Figure 2.1: Condor pool of workstations.

6

Introduction to Condor

and the job has to be restarted from scratch. With checkpointing, we could restart the job

from its most recent checkpoint on another machine, wasting only the time between the time

we last checkpointed the job and the time of the crash. The second reason Condor needs

checkpointing is that a user on whose machine Condor is running a remote job, may return

to his machine at any time and start working on it. Then, by de�nition, that machine is

not idle anymore and Condor should migrate the job to a new, idle machine. When periodic

checkpointing is used, the most recent checkpoint �le of the job is used to restart the job

from. Again, this prevents a total restart.

2.1 Submitting a Job

To submit a job, the user needs to specify the job in a special �le, called the job description

�le. This �le is passed as an argument to Condor submit , which will parse the job description

�le and will store the information in the local JobQueue. We will not discuss the syntax of

the job description �le in full detail but focus on the basics only. Furthermore, we'll only

describe the 'traditional' Condor job here: a job that consists of one process only. For this

kind of job, the syntax is:

<jdf> ::= <executable> <queue-list>

<queue-list> ::= <command-list> <queue-command> |

<command-list> <queue-command> <queue-list>

<command-list> ::= <input-name> <output-name> <error-name>

<argument-list> <initial-dir> <root-dir>

<environment>

<executable> ::= "Executable" "=" <exe-name>

<input-name> ::= "Input" "=" <file-name> | <empty>

<output-name> ::= "Output" "=" <file-name> | <empty>

<error-name> ::= "Error" "=" <file-name> | <empty>

<argument-list> ::= "Argument" "=" <string-list> | <empty>

<initial-dir> ::= "Initialdir" "=" <dir-name> | <empty>

<root-dir> ::= "Rootdir" "=" <dir-name> | <empty>

<environment> ::= "Environment" "=" <string-list> | <empty>

7

2.1 Submitting a Job

<queue-command> ::= "Queue"

<string-list> ::= <string> | <string> <string-list>

<exe-name> ::= <file-name>

<file-name> ::= string

<dir-name> ::= string

The following two semantic rules apply with the above syntax:

1. exe-name must refer to an existing unix executable �le

2. both dir-name of initial-dir and root-dir must refer to existing directories

From this syntax it follows that the most simple job description �le consists of an executable-

and a queuecommand.

It is illustrative to look at an example of a job description �le:

#################################

#

Job description file

#

#################################

Executable = foo

Initialdir = /home/usr/john_doe

Input = data

Output = log

Arguments = 1 2 3

Queue

################################

In this example, we submit a job that consists of a process that has an executable �le named

"foo". With "Input", "Output" and "Error", the user may specify the names for stdin, stdout

and stderr , which allows for a shell-alike �le redirection. After condor submit has parsed the

job description �le, it copies the executable �le and changes this copy so that it looks like a

checkpoint �le, which is therefore called the initial checkpoint �le.

8

Introduction to Condor

Standard C

Kernel

Library

User Code

User Space

Kernel Space

trap

Figure 2.2: Local system calls in unix.

2.2 Remote Execution

The idea of remote execution is that a job or process is not running on the local but on a

remote host. We will call the local host, the machine from which the job was submitted, the

initiating machine, and the machine the job is running on remotely, the execution machine.

The di�culty of remote execution is to give the remote running process the illusion it is still

running on the initiating machine. If, for instance, the process opens a �le named "foo", it

may be that this �le resides on a �le system mounted only at the initiating machine. Thus

the �le cannot be accessed from the remote machine. We therefore must have a mechanism

that let the remote process "see" the same execution environment on the remote host as on

the initiating machine. For this reason that users must relink their programs with the Condor

library , a replacement for the standard C library . Most important about the Condor library

is that all system call stubs are rewritten to allow remote system calls.

Every system call has a function (called a stub) in the C library with the same name as the

system call. These stubs merely causes a trap to the kernel, the kernel performs the system

call and returns control to the user process. The stub reads the return value of the system

call and passes it back to the caller. Figure 2.2 shows the way the C library handles system

calls.

9

2.3 Checkpointing

Kernel

User Space

Kernel Space

Standard C

Kernel

Library

User Space

Kernel Space

Shadow

Execution MachineInitiating Machine

rem
ote sytem

 call

trap

User Process

Condor

Library

Figure 2.3: Remote system calls in Condor.

In the Condor library, the stubs of all system calls are changed. Most system calls are

redirected back to the initiating machine. There, a special process, called the Shadow , is

running that acts as a server for remote system calls on behalf of the remote running process,

as is shown is Figure 2.3. Not all system calls are redirected back to the Shadow by the

Condor library. Some system calls must be done locally, for example, sbrk() which is used to

allocate memory. In Figure 2.4, the Condor library is shown in more detail. The user code

only interacts with the standard C library and the Condor system call stubs. The standard

C library will also use Condor system call stubs. The Condor routines make normal use of

the facilities found in the standard C library.

2.3 Checkpointing

A remote running process is periodically checkpointed by Condor. This facility is implemented

completely outside the unix kernel and is part of the Condor library. Checkpointing a process

results in storing the state of the process in a checkpoint �le, which is in fact a normal unix

executable. The di�erence between the two is that a checkpoint �le contains additional

information that is used by Condor to restore the state of the process so that it may resume

execution from the point where it was checkpointed.

Capturing the state of a running unix process is a di�cult job. Not only all memory must be

saved (stack, data, and text), but also parts of the process' state that is only known to the

kernel. Usually, that part is changed as result of a system call, for example, open() changes

the open �le table. Condor changes the stubs of such system calls so that they do not only

perform the system call (either locally or remotely) but also administrate the e�ect of the

10

Introduction to Condor

Standard C Library

Kernel

without stubs

Condor system call stubs

Condor Code for checkpointing and remote system calls

User Space

Kernel Space

including third party libraries
User Code

Condor

Library

Figure 2.4: Condor library.

11

2.3 Checkpointing

Other Info

Stack

Data

Text
Other Info

Stack

Data

Text

Other Info

Stack

Data

Previous Checkpoint

New Checkpoint

Core

Figure 2.5: Creating a new checkpoint �le.

system call. Unfortunately, some system calls have very complex side e�ects, for example,

fork() and exec(), which may be used to start a child process. Therefore, these system calls

are prohibited by Condor; they usually deal with interprocess communication and process

control.

As part of checkpointing, the user process exits and dumps core; this is forced by the check-

pointing routine in the Condor library. Condor will create a new checkpoint �le from the

previous one and the core �le, as is shown in Figure 2.5. The stack segment (layout of func-

tion calls) and data segment (variables etc.) are extracted from the core �le as these have

changed since the last (or initial) checkpoint. This new checkpoint �le is again an executable

�le. Furthermore, the Condor library includes a function MAIN (), which will be the entry

point for the process. It is therefore called before the user function main(). When run for

the �rst time, MAIN() will do some initialisation and then call the user function main(). The

next time the process is started, MAIN() will restore the state of the process. As normal, a

unix process is born with an empty stack. To let the user process continue where it left o�

just before checkpointing, MAIN() reads in the stack from the checkpoint �le. Before doing

this, Condor performs extra initialisations, such as re-opening �les that were open before

checkpointing. Just before checkpointing, the stack pointer and the program counter were

saved in a bu�er with a setjmp() call. After reading in the stack, Condor calls longjmp() to

reset the stack pointer and the program counter. After longjmp(), the process continues from

the point it left o� just before checkpointing.

12

Chapter 3

The Design of Condor Support for

Multiple-Process Jobs

This chapter describes how and to what extent the wisc version supports multiple-process

jobs and what is needed to fully support them. A job is administrated in so-called process

structures (proc structures). There are two versions of proc structures used in Condor, these

are V2 PROC structures and V3 PROC structures, for single-process jobs and multiple-

process jobs respectively. Only a few Condor processes manipulate with proc structures

explicitly, these are

1

condor submit, the Shadow, the Startd and the Starter. First, we will

examine the model of multiple-process jobs and how such jobs are speci�ed. Then, the proc

structures are discussed and the above mentioned processes are described in more detail.

Finally, we summarise what changes are needed for each process.

3.1 The Model of Multiple-Process Jobs

For single-process jobs, Figure 3.1 shows the relationship between all relevant processes.

When the Schedd gets permission to run a job, it starts the Shadow Parent with the name of

the execution machine as argument. The Shadow Parent contacts the Startd on the execution

machine and sends it a start-foreign-job request. The Startd will create two communication

channels, one for remote system calls and one for logging (not depicted) and returns the port

numbers that go with these two channels to the Shadow Parent. On the initiating machine,

the Shadow Parent forks the Shadow Child, whereas on the execution machine, the Startd

starts the Starter.

The Shadow is split up in a Parent and a Child process because the Shadow must run under the

1

Only the processes of interest are listed.

13

3.1 The Model of Multiple-Process Jobs

Shadow

Shadow

Pipe

Schedd Startd Schedd Startd

Starter

Process
User

User Job

Parent

Child

Initiating Machine Edxectution Machine

RSC Stream

RSC Stream

Figure 3.1: The model for single-process jobs.

UID of the user to perform remote system calls but under the UID of Condor and sometimes

root to maintain Condor administration. Therefore, the Child runs under the UID of the user

and the Parent under the UID of Condor (and sometimes root). The main task of the Shadow

Child is to perform system calls on behalf of the user process. When the user process dies, the

Shadow Child will receive information regarding the process's death from the Starter. The

Shadow Child will send this status information to the Shadow Parent via the pipe.

The main task of the Starter is to control the user job. The Starter must start it, suspends

its execution and transfer any checkpoint �le back to the initiating machine. Although in

Figure 3.1, it is depicted that the Starter and the user process have separate connections with

the Shadow, they actually Share the same communication channel. The user process needs it

to request the Shadow to perform system calls and the Starter needs it to perform so-called

pseudo system calls . These pseudo system calls are special requests that are handled by the

Shadow Child in the same way as a normal system call request. Since the Starter only needs

to communicate through this communication channel when the user process is not running

(it is either suspended or not running at all), they can share the channel.

In the wisc version there is no similar model for multiple-process jobs, so we have designed

a new model, as depicted in Figure 3.2. All user processes and the Starter have a separate

communication channel with the Shadow Child. The Shadow Child will poll each connection

with the execution machine and will perform any pending requests.

14

The Design of Condor Support for Multiple-Process Jobs

Startd Schedd

Process Proces

Shadow

Parent

Shadow

Child

Schedd Startd

Starter

User User User
Process

RSC Stream

RSC Stream

RSC Stream

RSC Stream
Pipe

Initiating Machine Execution Machine

User Job

Figure 3.2: The model for multiple-process jobs.

3.2 The Speci�cation of Multiple-Process Jobs

The wisc version has a syntax for multiple-process jobs. This will do for the moment so

nothing needs to be changed. A di�erence with single-process jobs is that we now have

job-speci�c information (for example, the environment string) and per-process information.

In the syntax of multiple-process jobs, the per-process information consists of the names for

stdin, stdout, stderr and the argument string. A formal description

2

is given below.

<jdf> ::= <executables> <queue-list>

<queue-list> ::= <command-list> <queue-command> |

<command-list> <queue-command> <queue-list>

<command-list> ::= <job-specific> <proc-specific>

<job-specific> ::= <initial-dir> <root-dir> <environment>

<proc-specific> ::= <per-proc> | <per-proc> <proc-specific>

<per-proc> ::= <input-name> <output-name> <error-name>

<argument-list>

<executables> ::= "Executable" "=" <exe-list>

2

A few details are omitted.

15

3.2 The Speci�cation of Multiple-Process Jobs

<input-name> ::= <exe-name> "." "Input" "=" <file-name> | <empty>

<output-name> ::= <exe-name> "." "Output" "=" <file-name> | <empty>

<error-name> ::= <exe-name> "." "Error" "=" <file-name> | <empty>

<argument-list> ::= <exe-name> "." "Argument" "=" <string-list> | <empty>

<initial-dir> ::= "Initialdir" "=" <dir-name> | <empty>

<root-dir> ::= "Rootdir" "=" <dir-name> | <empty>

<environment> ::= "Environment" "=" <string-list> | <empty>

<queue-command> ::= "Queue"

<exe-list> :: <exe-name> <exe-list> | <empty>

<string-list> ::= <string> | <string> <string-list>

<exe-name> ::= <file-name>

<file-name> ::= string

<dir-name> ::= string

<string> ::= char+ | <empty>

The semantic rules are similar to those for single-process jobs:

1. All exe-names must refer to existing unix executable �les, must be unique and must be

listed in the exe-list.

2. At least one exe-name must be speci�ed.

3. Both dir-names of initial-dir and root-dir must refer to existing directories.

Again, a short example of a job description �le is given. It shows a job of two processes, foo

and bar. For process bar, stdin and stdout is speci�ed; for process foo only stdin is speci�ed;

for both, arguments are speci�ed. Note that the initial working directory is job-speci�c

information.

#################################

#

Job description file

#

#################################

16

The Design of Condor Support for Multiple-Process Jobs

Executable = foo bar

Initialdir = /home/usr/john_doe

foo.Input = inp

foo.Output = data

foo.Arguments = one two three

bar.Input = samples

bar.Output = results

bar.Arguments = 1 2 3

Queue

################################

3.3 Process Structures

A proc structure contains all the information that is needed to administrate a job. Since

Condor was designed for single-process jobs, the original proc structure (see Figure 3.3) only

contains information about one process. The term proc structure is misleading: It seems if

a proc structure contains information about one process only; this is true for single-process

jobs (there is only one process) but not for multiple-process job. A proc structure holds the

information for all processes in a job. Proc structures should have been called job structures ,

but they are not; we will still use the term proc structure. When this proc structure (now

called a V2 PROC structure) is used, version num must be set to 2, otherwise erroneous

events may occur.

For multiple-process jobs, a V3 PROC structure is used, see Figure 3.4 . Version num

of a V3 PROC structure must be set to 3. The �rst part of this proc structure contains

job-speci�c data which are almost the same as for a V2 PROC structure. New, among other

things, is universe, which speci�es the type of job: Currently the following values are de�ned:

� STANDARD : Original - single-process jobs, one per machine

� PIPE : Pipes - all processes on a single machine

� LINDA : Parallel applications via Linda

� PVM : Parallel applications via Parallel Virtual Machine

� VANILLA : Non-Condor linked jobs

17

3.3 Process Structures

int

PROC_ID*

char*

int

char*

char*

char*

char*

char*

cluster

proc

int

int

V2_PROC structure

PROC_ID structure

version_num

id

status

owner

cmd

args

in

out

err

command name

arguments string

owner’s name

file name for stdin

file name for stdout

file name for stderr

Figure 3.3: The original proc structure (V2 PROC structure).

� PVMD : Explicit, PVM daemon process

Types linda, pvm, vanilla and pvmd are not considered here; only single-process jobs (type

standard) and multiple-process jobs (type pipe) are of concern. Since a multiple-process

job is basically the same as a pipe job without pipes, they both are of type pipe.

The second part speci�es per process the name of the executable, the arguments and the �le

names for stdin, stdout and stderr.

The next part contains the number of pipes and, per pipe, a pipe description P DESC which

is listed below.

typedef struct {

int writer; /* index into cmd array */

int reader; /* index into cmd array */

char *name; /* for named pipes, NULL otherwise */

} P_DESC;

The writer and reader are indices in the cmd-array and therefore specify the two pro-

cesses which share a pipe. Although the wisc version does not run pipe jobs, the support to

administrate such a job is present.

18

The Design of Condor Support for Multiple-Process Jobs

...

...

...

file name for stdin 1

file name for stdin N

file name for stdout 1

file name for stdout N

file name for stderr 1

file name for stderr N

int

int process

cluster

PROC_ID structure

owner’s name

command name 1

...

arguments string 1

...

command name N

argument string N

...

int

int

char*

writer

reader

name

int

int

char*

writer

reader

name

pipe name 1

pipe name M

int

char*

int

int

char**

char**

char**

char **

int

P_DESC*

char**

universe

owner

status

err

cmd

args

in

out

n_cmds

n_pipes

pipe

V3_PROC structure

version_num int

PROC_ID* id

PDESC structure

Figure 3.4: The new proc structure (V3 PROC structure).

19

3.4 The Shadow

The V3 PROC structure is su�cient for multiple-process jobs so nothing needs to be

changed.

3.4 The Shadow

It is the Shadow which has no support for multiple-process jobs. It can handle requests from

one client connection only; for this, we will change the Shadow as described below. We need

not change the protocol with either the Startd or the Starter.

After the Schedd got permission to run a job, it starts the Shadow (Parent). The Shadow is

invoked with the name of the remote host and the job's cluster and proc id. as arguments.

The Shadow starts a child process, the Shadow Child, which will handle all remote systems

calls. The actions that are performed by the Shadow (Parent and Child) are listed below.

Shadow Parent

1) read job from job queue

2) contact STARTD on the remote host

3) send STARTD a START_FOREIGN_JOB request

4) send STARTD the job's CONTEXT

5) read two port numbers sent by the STARTD

6) create two stream socket connections using these port numbers

7) create a pipe for communication with the Child

8) start the SHADOW Child

9) while (NOT received all status from SHADOW Child)

10) read status on pipe

11) mail user

Shadow Child

1) while (NOT remote job has finished)

2) poll all connections for requests

3) for all connections

4) if (has a pending request)

5) handle request

6) return result

7) if a user process died

8) send status to SHADOW Parent via pipe

For the Shadow Parent, we introduced step 9 and 10, so that it will now read status for all

user processes instead of one. The Shadow Child is completely changed, except for step (5)

and (8). These two steps are only slightly changed so that they accept a parameter that

speci�es for which user process a request should be handled (5) or should be sent status (8).

20

The Design of Condor Support for Multiple-Process Jobs

The Shadow Parent is responsible for making the connections with the Startd on the remote

host. This connection is established via publically known port numbers. Using this con-

nection, the Shadow Parent requests the Startd to start a job by means of a start frgn job

command. With this request, it sends the context of the job, which contains the architecture

and operating system for which this job is compiled. If the Startd is running on a machine

with the same speci�cations, the Startd creates two communication channels and returns the

port numbers that goes with them. The Shadow Parent uses the two port numbers to connect

with the created channels; one channel will be used for handling remote system calls, the other

for logging. Furthermore, the Shadow Parent creates a pipe which is used for communication

with the Child. Then, the Shadow Child is forked and the Shadow Parent will wait until it

receives information from the Shadow Child.

The Shadow Child should be viewed as a server for remote (pseudo) system calls. All user

processes and the Starter should be viewed as clients. Therefore, the Shadow Child will wait

until a request is made on one of the communication channels. It polls all channels for pending

requests; if it �nds one, it performs the request and sends back the result. If there are no

pending requests, the Shadow Child is put to sleep. After a user process has terminated,

and the Starter has sent information about its death, the Shadow Child examines whether

this user process has terminated normally or abnormally. In both cases, the Shadow Child

sends status information to the Shadow Parent through the pipe. Since we now have more

than one process, before we send information, we send a number identifying the process. The

information is:

� the reason the user process exited

� the image size of the user process

� the resource usage of the user process

� the directory in which the user process has created a core dump

In case of an abnormal termination (e.g., the user process made a segmentation fault), the

whole job is terminated

3

and marked completed ; it will never run again. After all user pro-

cesses have terminated normally, the Shadow Child will terminate too. For multiple-process

jobs, the individual processes are not related by any communication channel; therefore, when

one user process terminates abnormally, other user processes may continue as normal. How-

ever, in pipe jobs, processes depend on one another, therefore, they cannot be run individually,

only as a whole. We anticipate this behavior and do not allow other processes to continue

when a user process terminates abnormally.

After the Shadow Parent has received all information about either all normally terminated

user processes or one abnormally terminated user process, it will wait for the Shadow Child

3

By sending a kill foreign job command to the Startd.

21

3.5 The Startd

to die. Depending on the status information it has received, it updates the proc structure for

this job and stores the structure in the JobQueue. If the job has terminated, either normally

or abnormally, the Shadow Parent will mail the user about the completion of this job.

3.5 The Startd

Although we haven't changed the Startd (as it does not explicitly manipulate a job), it is

described anyway. However, we will only focus on the interaction with the Shadow and the

Starter; all other functionality of the Startd is omitted. One of the functions of the Startd,

is to start the Starter which, in his turn, will start the user job.

When the Startd is started, it creates a socket using a publically known port number. The

Startd is polling this socket to see if someone makes a connection on it. If so, it reads and

performs the request: The accepted requests are:

� start frgn job: this request is made by a Shadow to start a user job on this machine

� ckpt frgn job: request to checkpoint the user job

� kill frgn job: request to kill the user job

� req new proc: request to start a new user process

� starter x: request to explicitly use alternate Starter x (0� x � 9)

start frgn job is the traditional request made by a foreign Shadow to start a job. The wisc

version also allows a job to be started by means of a starter x request

4

. In the �le con-

dor con�g , which holds the global con�guration of the Condor pool, one can specify alternate

Starters by means of a alternate starter x= executable name statement. The traditional

request will use, as normal, condor starter in the Condor bin directory. In either case, the

Starter will read the context of the job sent by the foreign Shadow. If this context matches

the architecture and operating system of the host, the Startd returns the port numbers of

two created communication channels

5

. As a last action concerning the start of foreign jobs,

the Starter is started. Since the Startd does not need the communication channels with the

Shadow, it closes them after starting the Starter.

The ckpt frgn job and kill frgn job commands may be requested by some Condor service

program. Since such programs do not know how to contact the Starter (or the user process)

4

Used for testing new Starters.

5

As described earlier.

22

The Design of Condor Support for Multiple-Process Jobs

directly, they connect with the Startd by means of its publically known port and make the

request. As a result, The Startd will signal the Starter.

Normally, the Startd starts the Starter which will request the Shadow for a proc structure,

then, the Starter starts the user job. The req new proc request may be used to dynamically

start new user processes on the remote host whenever the Starter is already hosting a remote

job. After receiving this request, the Startd will signal the Starter. The Starter will react by

requesting a new proc structure at the Shadow . Using this proc structure, the Starter will

start one or more processes it �nds in it. This special feature of Condor is of no interest for

multiple-process jobs, as it is used for PVM; it is mentioned here for completeness only.

3.6 The Starter

The Starter is responsible for starting and controling the foreign user job. It is invoked with

the name of the submitting machine as argument. The Starter is implemented as a �nite

state machine, which means that control is separated from action. Therefore, the Starter can

be described with a state transition diagram. This diagram shows the states the Starter can

be in and the events which cause a transition to another state. The original diagram that

is included with the wisc Condor version is shown in appendix B. To describe the Starter, a

simpli�ed state transition diagram is shown here (Figure 3.5); for clarity, some asynchronous

events, which may occur at any time (such as die requests), are omitted.

The names for events, states and actions in this picture match the names that are used in the

code. Function names are in italics and asynchronous events are depicted with bold arrows.

An event causes a transition from one state to another and with each event goes an action

6

.

An event may be either synchronous or asynchronous. The asynchronous events are signals,

usually sent by the Startd or by the Starter itself; these are listed in Table 3.1. Synchronous

events occur depending on the state the Starter is in.

There are only a few changes needed for the Starter. Because the Shadow cannot handle

multiple-process jobs the Starter will request the Shadow about one process only. We only

need to change this behavior so that the Starter will fetch all the checkpoint �les from the

initiating machine instead of only one. Furthermore, the Starter can handle the failure when

it couldn't get the information about a process or when it couldn't transfer a checkpoint �le.

In that case, the missing process could be added later. Again, for multiple-process jobs this

behavior would be enough, but for pipe jobs it would not. When the Starter could not get

the information about all user processes or could not get all checkpoint �les, it will terminate,

assuming an error.

6

Actions for events are not depicted here, see appendix B.

23

3.6 The Starter

START

SUPERVISE UPDATE_ALL

GET_EXEC GET_PROC

SEND_CKPT_ALL

SEND_STATUS_ALL

UPDATE_ONE

get_exec init

supervise_all

update_one

CKPT&VACATE

SUCCES DEFAULT

ALARM

DEFAULT
SU

C
C

ES

U
PD

A
TE_O

N
E

SU
C

C
ES

DO_QUIT

D
EFA

U
LT

SUCCES
NEW

_P
ROC

END

get_proc

update_all

send_ckpt_all

dispose-all

asynch_wait
UPDATE_WAIT

D
O

_W
A

IT

CHILD_EXIT

Figure 3.5: State Transition Diagram of the Starter.

24

The Design of Condor Support for Multiple-Process Jobs

Event Signal Description

get proc sighup start a new user process

suspend sigusr1 suspend execution of all running user processes

continue sigcont resume execution of suspended user processes

vacate sigtstp user processes should migrate

alarm sigalarm alarm set for periodic checkpointing

die sigint kill all user processes

child exit sigchild noti�cation that a child process exited

ckpt and vacate sigusr2 all user processes should checkpoint and migrate

Table 3.1: Asynchronous events.

3.6.1 Starting a Job

We will now examine the state transitions that will occur when a multiple-process job is

started. The Shadow has contacted the Startd and the Startd has started the Starter with

the name of the initiating machine as argument. The actions performed at each state and

the state transitions are listed below:

� start: init will perform initialisation actions such as: moving to the execute directory,

setting the resource limits and closing unused �le descriptors.

� default : does nothing

� get proc: Function get proc should send the Shadow as many get proc requests as

there are user processes

7

. The Shadow will respond by sending the proc structure for

each process. Furthermore, it sends the name of the checkpoint �le and the name of

the �le in which a new checkpoint should be stored. Finally, it sends the signal number

which can be used for a soft kill , which only means that the Starter should set up a

signal handler for this signal; it may be used to kill a user process immediately but in

a clean way.

� success : does nothing

� get exec: In get proc, the Starter will fetch the checkpoint �les for all user processes.

It will make a symbolic link to a checkpoint �le if it can be accessed directly. If not, the

Starter will fetch it either via NFS or via the communication channel wit the Shadow.

� success: Function spawn all will fork and exec all user processes.

� supervise: supervise all will start the periodic checkpoint timer for all user processes

and then waits for some asynchronous event.

7

This is what need to be changed; originally, the Starter would make one request.

25

3.6 The Starter

Each process requires a separate communication channel for remote system calls with the

Shadow. Therefore, the Starter makes a pseudo new connection request with the Shadow

for each user process. The Shadow opens a new communication channel and sends back the

port number that goes with it. The Starter uses this port number to connect with the newly

created channel. Now, when the Starter forks and execs a user process, this user process is

born a communication channel with the Shadow.

3.6.2 Checkpointing a Job

Checkpointing a multiple-process job is done by checkpointing the individual processes. The

Starter in the wisc version is capable of checkpointing each user process. We have not tested

this, however, nor have we changed anything about the mechanism. Below, we will describe

the state transitions that occur when the Starter checkpoints a multiple-process job.

Normally, the Starter is in state supervise. Checkpointing takes place whenever the check-

point alarm expires or the Starter receives a checkpoint and vacate signal from the Startd,

which probably means that the user reclaimed his machine and the job should move.

In both cases, the Starter moves to state update all and suspends the execution of all user

processes. Then, it sends the �rst user process a checkpoint signal. After this, it moves to

state update wait where it waits for the user process to exit. When this happens, the Starter

moves to state update one where it updates the checkpoint �le for the user process that

just has exited; from the old checkpoint �le and the core dumped by the user process, a new

checkpoint �le is assembled. This new checkpoint �le is immediately committed, that is, the

old one is discarded. Now, the Starter moves back to state update all and sends the next

user process a checkpoint signal and performs the same loop. In this way, all user processes

are checkpointed.

Finally, when all user processes have made a checkpoint, the Starter will move to either state

supervise or to state send ckpt all. In the �rst case, all user processes are restarted. In the

second case, the job should vacate and therefore, in state send ckpt all, the Starter sends

all checkpoint �les back to the Shadow. Then, it moves to state send status all where it

sends for all user processes status information to the Shadow. Finally, it moves to state end

which will cause the Starter to exit.

3.6.3 Termination of a User Process

Again, it must be noted that Figure 3.5 is a simpli�cation of the original State Diagram; all

kinds of asynchronous events are left out. The most important task of the Starter is to detect

and investigate the termination of a user process, which is one of those asynchronous events.

26

The Design of Condor Support for Multiple-Process Jobs

The reason a user process terminates can be one of the following

8

:

� normal termination: This means that the user process has �nished its computation

and exits.

� abnormal termination with a core dump: The user process either violated the

system or dumped core because of checkpointing. In the �rst case, this user process is

not allowed to be restarted again; in fact, the whole job must be terminated and may

never be restarted.

� abnormal termination without a core dump: Again, the user process violated the

system.

Normally, the Starter sends status information about the termination of a user process imme-

diately after such a user process has died, with the exception of a user process that terminated

with a core dump because of checkpointing. In case of an abnormal termination with a core

dump, the Starter will also transfer the core �le back to the initiating machine.

3.7 Summary of Changes

We shortly list the changes that are applied to the Starter and the Shadow of the wisc version

to fully support multiple-process jobs.

1. Shadow Parent:

� read status for all user processes instead of one

2. Shadow Child:

� maintain multiple connections instead of one

� listen on multiple connections instead of one

� wait for all user processes to die instead of one

3. Starter:

� fetch a checkpoint �le for each user process

� start all user processes instead of one

8

A normal or abnormal termination must be seen from a unix point of view. Condor regards a termination

of a user process which dumped core for checkpointing as a normal termination.

27

3.7 Summary of Changes

28

Chapter 4

The Design of Condor support for

Pipe Jobs

When designing pipe jobs we must meet two requirements:

1. allow for a piping mechanism like the one in the shell

2. allow for the mapping of �le names to the ends of a pipe

The �rst requirement is intuitive, as it is a very common and powerful mechanism in unix.

The second requirement is more practical and allows for SMC jobs at CERN to run without

changing a single line of source code. Note that these two requirements have di�erent seman-

tics. In the �rst case we redirect stdout to stdin via a pipe. In the second case, we allow

piping of data between two processes which were programmed to read from and write to �les.

At run time, when the process tries to open a �le which is to be piped to another process.

We do not open the �le but map it on a pipe end, we will call this a �le-to-pipe mapping.

Furthermore, looking more closely at the jobs that run at CERN, we not only found out that

these programs were written with hard-coded �le names, but also that these names may be

the same for di�erent programs. This has the following consequences:

� When we map �lenames to the end of a pipe, the names of the read and write end need

not be the same. Typically, the name for an input �le is fort.10 and for and output�le

fort.11 . Our syntax must allow to specify both names for each pipe.

� The processes in a job cannot run in the same directory, because the names of input and

output �les may be the same. If we want these �les to be di�erent for each process, we

must run them in di�erent directories. Any chdir system call issued by a user process

29

4.1 The Model and Assumptions for Pipe Jobs

is performed (remotely) by the Shadow. As a consequence, all user processes share the

same working directory. For the sake of the SMC jobs, the Shadow need to service each

user process in its own local working directory. Furthermore, we must allow the user to

specify the initial working directory for each user process.

For the pipe jobs we needed to change the Shadow, the Starter and the Condor library.

The Shadow has all the information about a remotely running job. So, when on the remote

machine (Starter or user process), information is needed about the pipes, a request to the

Shadow should be made to obtain the information. This introduces new pseudo system calls

to the system.

4.1 The Model and Assumptions for Pipe Jobs

In our model, we distinguish two kinds of processes: user processes and control processes. User

processes are running user programs that were linked with the Condor library and control

processes are part of the Condor Software (all Condor daemons, the Starter and the Shadow).

Pipe jobs consist of one or more user processes, which all have a communication channel with

the Shadow, and these user processes may be connected through pipes. Furthermore, unless

explicitly stated otherwise, a pipe job runs as a whole on one machine.

Because we want to checkpoint pipe jobs we will brie
y list the standard behavior of pipes in

unix:

� Each pipe has a �xed-sized bu�er of size PIPE BUF

1

, which varies on di�erent machines.

A Posix compliant should set PIPE BUF to at least POSIX PIPE BUF.

� There may be more than one reader and more than one writer of a pipe; if so, the pipe

is shared between all its readers and writers.

� Writing data of size less than or equal to PIPE BUF to a pipe, is guaranteed to be

atomic. An attempt to write more than this amount will result in writing as much as

possible and putting the writer to sleep until the pipe gets drained by a reader.

� A read call on a non-empty pipe will result in reading the requested amount of data

or, if fewer data are available, all the available data; in both cases the call returns the

number of bytes read. A read call on an empty pipe will put the process to sleep until

some other process writes data to it; whenever there is no process that has the pipe

open for writing, the read call does not block and returns 0 to indicate end-of-�le.

1

This is a unix constant.

30

The Design of Condor support for Pipe Jobs

It is also possible to open a pipe (for reading or writing) with a nonblocking option, which

means that a read or write call will never block.

The pipes which will be used between the user processes must be blocking. Remember that

we allowed mapping of �les on the ends of a pipe. Therefore, we must preserve the semantics

of read and write calls on �les when applied to pipes. For �les, a read call will always be

successful and will return the number of bytes read; however, when fewer data are returned

than requested, end-of-�le is reached. For pipes, whenever there are data available, a read call

immediately returns (for both blocking and non-blocking pipes) with at most the amount of

requested data; if fewer data are returned than requested, then no more data were available

at the moment and one or more additional read calls should be performed to obtain all the

requested data. Therefore, we should change the read call stub of a pipe so that it mimics the

read call on a �le. We must do this with blocking read calls so that the process is put to sleep

when no data are yet available. Doing this with non-blocking read calls would actually mean

that we are polling the pipe for more data; this is an unnecessary performance decrease.

Furthermore, we impose only two restrictions on pipe jobs, these are:

1. When a process has more than one �le-to-pipe mapping, the names of the �les must

be unique. If they are not, we should translate a write call to the pipe into duplicated

write calls for each pipe. Consider the example shown in Figure 4.1 in which process 1

writes to �le data and process 2 and 3 read from it. All three processes have a separate

pointer to the �le indicating where the next read/write operation will take place. Since

process 2 and 3 expect to read from a �le, we must create separate pipe connections

when we map �le data to a pipe. Otherwise, the data written by process 1 is shared by

process 2 and 3 according to the policy: "�rst come, �rst served", see Figure 4.2. As

is shown, process 2 and 3 share the same read pointer. For the sake of simplicity, we

do not allow such multiple �le-to-pipe mappings. The same argument holds for piping

stdout of one process to another; this may also happen only once.

2. No process may pipe data to itself; also for the sake of simplicity

There are no restrictions on the number of pipes per process, except for the total number

of open objects per process, a standard unix restriction. Also, circular pipe topologies are

allowed. Note that even though there is the danger for deadlock when allowing circular pipe

connections, Condor cannot prevent the user from writing poorly designed programs.

4.2 The Speci�cation of Pipe Jobs

Our syntax adds an extra command to the syntax of multiple-process jobs: pipe-desc.

Furthermore, the initial working directory may be speci�ed per process. A formal description

31

4.2 The Speci�cation of Pipe Jobs

p1

p2

p3

DATA
write

rea
d

read

Figure 4.1: Three processes sharing a �le.

p1 DATA

p2

p3read

write

Figure 4.2: Three processes sharing a pipe.

32

The Design of Condor support for Pipe Jobs

is given below:

<jdf> ::= <executables> <queue-list>

<queue-list> ::= <command-list> <queue-command> |

<command-list> <queue-command> <queue-list>

<command-list> ::= <job-specific> <proc-specific>

<job-specific> ::= <root-dir> <environment>

<proc-specific> ::= <per-proc> | <per-proc> <proc-specific>

<per-proc> ::= <input-name> <output-name> <error-name>

<argument-list> <initial-dir>

<executables> ::= "Executable" "=" <exe-list>

<pipe-desc> ::= "Pipe" "=" <pipe-list>

<input-name> ::= <exe-name> "." "Input" "=" <file-name> | <empty>

<output-name> ::= <exe-name> "." "Output" "=" <file-name> | <empty>

<error-name> ::= <exe-name> "." "Error" "=" <file-name> | <empty>

<argument-list> ::= <exe-name> "." "Argument" "=" <string-list> | <empty>

<initial-dir> ::= "Initialdir" "=" <dir-name> | <empty>

<root-dir> ::= "Rootdir" "=" <dir-name> | <empty>

<environment> ::= "Environment" "=" <string-list> | <empty>

<queue-command> ::= "Queue"

<exe-list> ::= <exe-name> <exe-list> | <empty>

<pipe-list> ::= <simple-pipe> | <advanced-pipe> | <pipe-list> | <empty>

<simple-pipe> ::= <exe-name> "|" <exe-name>

<advanced-pipe> ::= <exe-name> ">" <file-name> <file-name> ">" <exe-name>

<string-list> ::= <string> | <string> <string-list>

<exe-name> ::= <file-name>

33

4.2 The Speci�cation of Pipe Jobs

<file-name> ::= string

<dir-name> ::= string

<string> ::= char+ | empty

The same semantic rules for the speci�cation of multiple-process jobs hold for pipe jobs. In

addition the following semantic rules apply to the above syntax:

1. When a process has more than one pipe, all its pipe-names must be unique.

2. The two exe-names in a pipe-desc must be di�erent.

3. When stdout of one process is piped to stdin of another process, no names for stdout

of the �rst and stdin of the second process may be speci�ed.

The �rst and the second rules are needed because of the two restrictions we imposed on

pipe jobs. The third rule deals with the fact that both the j token and the input-name and

output-name try to specify what to do with stdin and stdin. We cannot allow the user to

specify both a piping command and a �le redirection command for either stdin or stdout, as

it is ambiguous.

Below are two example description �les to show the use of both piping mechanisms.

#################################

#

Job description file

#

#################################

Executable = foo bar

Pipe = foo | bar

foo.Input = inp

foo.Arguments = one two three

bar.Initialdir = /home/usr/john_doe/special

bar.Output = results

bar.Arguments = 1 2 3

Queue

################################

#################################

34

The Design of Condor support for Pipe Jobs

#

Job description file

#

#################################

Executable = foo bar

Pipe = foo > fort.11 fort.10 > bar

foo.Initialdir = /home/usr/john_doe/directory_one

foo.Input = inp

foo.Output = data

foo.Arguments = one two three

bar.Initialdir = /home/usr/john_doe/directory_two

bar.Input = samples

bar.Output = results

bar.Arguments = 1 2

Queue

################################

In the �rst example, we pipe foo's stdout to bar's stdin. Note that we explicitly speci�ed

an initial working directory for bar; since we did not specify one for foo, its initial working

directory will be the directory from which the job is submitted.

The second example, shows the use of mapping �le names to the ends of a pipe. When foo

or bar tries to open �le fort.11 or fort.10 respectively, we map them on the correct ends

of the pipe. Note that we may specify names for stdout for foo and stdin for bar.

4.3 Process Structures

For pipe jobs, we need to extend the proc structure so that it also contains the needed

information about pipes. The wisc version already anticipated this with a pipe table in the

V3 PROC structure. However, it only associated one name with each pipe; for our purposes,

we need two names and so we extended the de�nition of the V3 PROC structure accordingly.

The pipe table has as many entries as there are pipes and entry contains:

1. the name of the �le that is mapped on the write end of the pipe

2. the name of the �le that is mapped on the read end of the pipe

3. the index in the executable list of the process that reads from the pipe

35

4.4 Setting up the Pipes

4. the index in the executable list of the process that writes to the pipe

Furthermore, instead of one initial working directory, a table of initial working directories is

included in the V3 PROC structure.

4.4 Setting up the Pipes

When using pipes on the remote machine, we can make use of either named or unnamed

pipes. We shall use unnamed pipes and postpone the discussion about this choice until we

discuss checkpointing pipe jobs in the next chapter.

The Starter will create the pipe connections for the user processes and when starting a child,

these pipe connections are inherited. To create the pipe connections, the Starter needs to

know the number of pipes and for each pipe:

� which pipe end belongs to which process

� what �le descriptor should go with each end

Note that the Starter need not know what �le names are mapped on what pipe ends; this is

handled by the open stub of the Condor library.

In the philosophy of Condor, the Shadow should be the one and only process that has all

the information about the job. Therefore, the Starter should make requests, by means of

pseudo system calls, to obtain the information it needs. Unfortunately, the implementation

of the wisc version is inconsistent with this philosophy. The Starter in this version will simply

request the proc structure that goes with the job and thus has access to all information about

the job, even to information it will never use. In our design of pipe jobs we will introduce

a di�erent approach that conforms to the philosophy. Ideally, the Starter should use the

following protocol with the Shadow for starting a job:

1. Request job-type-independent information. Typically this may be: type, id , number of

processes , owner etc.

2. Request job-type-dependent information. For a pipe job, for instance, the earlier men-

tioned information may be requested.

3. Request per-process information. This may be: name of the checkpoint �le, initial

working directory , etc.

36

The Design of Condor support for Pipe Jobs

It is not our intention to completely redesign the Starter, but we deal with step 1 and 2. We

introduce two new pseudo system calls which will be described below. PSEUDO get job is

used to get the following job-type-independent information (step 1):

1. The type of the job;

2. The id of the job;

3. The number of processes.

From the type of the job the Starter may tell what job-type-dependent information it should

request the Shadow. For pipe jobs only, we introduce PSEUDO pipe info to obtain the

following job-type-dependent information (step 2):

1. The number of pipes;

2. A table that holds for each pipe, the processes that read from and write to it (that is,

the o�sets in the executable list);

3. A table that holds for each pipe the �le descriptor for the read and write end.

We will not change the behavior of step 3, the per-process information; we still request for

the V3 PROC structure. However, we will request the same V3 PROC structure for each

user process, pretending that it only contains per-process information.

Before a user process is started, the Starter will create the pipes and will use the dup2 system

call to duplicate the pipe ends to the �le descriptor that is speci�ed in the table it received

from the Shadow.

4.5 The Runtime Model of Pipe Jobs

The runtime model of pipe jobs a�ects all system calls that manipulate either �le names or

�le descriptors. Most important are : open, read and write. open is a generic function for

opening objects which are associated with a unix path name, such as named pipes, �les and

devices. The open call returns the �le descriptor (a small positive integer) that goes with the

opened object. This �le descriptor is used for further manipulation of the object. Opening

an object and administrating the information is necessary for both checkpointing and remote

system calls. Therefore we split up the discussion about the a�ected system calls in open,

read and write operations, and other system calls. Also, part of the runtime model is the

treatment of the standard �les: stdin, stdout and stderr.

37

4.5 The Runtime Model of Pipe Jobs

4.5.1 Standard Files

When a user process is started, the pipe connections are already open. As part of the ini-

tialisation, Condor (that is function MAIN in the Condor library) needs to known what to

do with stdin, stdout and stderr. In the wisc version, the names of the �les to which these

standard �les should be redirected were passed as an argument to the user process. So the

�rst argument is the �le name for stdin, the second for stdout and the third for stderr. In

MAIN, these �les are opened and duplicated to �le descriptor 0, 1 or 2 for stdin, stdout or

stderr respectively. Again, this implementation is in con
ict with the design philosophy of

Condor. It requires the user process to interpret the argument list for these �les names and

for the Starter to set up this argument list when it starts the user process (and thus need to

know the names as well). So, the information about the names for stdin, stdout and stderr,

travel from the Shadow to the Starter to the user process.

Instead, MAIN should request the Shadow what to do with the standard �les. Therefore,

we introduce yet another pseudo system call: PSEUDO open std �le, which is called by

MAIN for each standard �le separately. It can be thought of as a request to the Shadow:

"What should be done with standard �le x" (x=0,1 or 2, for stdin, stdout and stderr, respec-

tively). Because of pipe jobs, the Shadow could respond with either "It is a �le and has the

next name ..." or "It is already open at the following �le descriptor ...". In the �rst case, the

standard �le is redirected to or from a �le. The second case tells us that the Starter already

created a communication channel for the standard �le. In case of pipe jobs, the communica-

tion channel can only be a pipe, but we like to keep things general; in the future, we could

use sockets to redirect data to a process on another machine. That is why we refer to an

anonymous object that is already open instead of a speci�c object, such as a pipe. Conform-

ing to the design philosophy of Condor, the Shadow should determine what to do with stdin,

stdout and stderr, after that, it sends back the result (either a �le name or a �le descriptor).

The semantics of PSEUDO open std �le can be found in the next Chapter.

4.5.2 Open System Call

Before we discuss the new design of the open system call stub, we �rst look at some details.

Originally, Condor redirects the open system call back to the Shadow. The Shadow opens

the �le and sends back the �le descriptor; the object is opened remotely . As an optimisation,

Condor will see if it can access the object via the Network File System (NFS). We will not

discuss how this is done, all we need to know is that if the object can be accessed via NFS,

the object is opened locally . Which way the object is opened, is transparent to the user

process. As usual, open returns the �le descriptor which is used by the user process for

further manipulations on the object.

Without any precautions, this may lead to �le descriptor clashes, as is described next. Suppose

38

The Design of Condor support for Pipe Jobs

Flags

Priv

Position

Real fd

Duplicate of

Name

Figure 4.3: Entry in the VUFDT.

the user process opens a �le named "foo" and assume that the �le can be accessed via NFS.

Then �le "foo" is opened locally at, let's say, �le descriptor 5. Then, the user process opens

a �le named "bar" and we now assume that this �le cannot be accessed via NFS. Then the

Shadow is requested to open the �le and let's assume that also �le descriptor 5 is returned.

Then there are two objects referred to with the same �le descriptor, which leads to erroneous

events. Note that this example is not some rare case, it may happen all the time. File

descriptors are actually o�sets in a table of all open objects, the user �le descriptor table.

When a new object is opened, the kernel returns the o�set of the �rst slot that is not taken.

So it is very likely that when, for example, some �les are opened locally (NFS) and some are

opened remote (Shadow) that there will be overlapping �le descriptors. This is an unwanted

situation of course, and Condor's solution is the use of a so-called virtual user �le descriptor

table

2

(VUFDT). This table is used for both the mapping of virtual �le descriptors to real

�le descriptors

3

and for administrating of all open objects for the need of checkpointing.

When an object is opened (either locally or remotely), Condor does not return the real �le

descriptor, instead it returns a virtual �le descriptor, which is the �rst non-empty entry in the

VUFDT (note the analogy with the normal user �le descriptor table, hence the name). For

each system call that takes a �le descriptor as argument, Condor �rst maps the virtual �le

descriptor to the real �le descriptor before the system call is performed; the mapping takes

place in the stubs of these system calls. The format of an entry in the VUFDT is showed in

Figure 4.3.

In such an entry Flags is a bit�eld that speci�es the type of object. The wisc version uses

the following bitmask:

� FI OPEN: this object is open

� FI DUP: this object is a duplicate of Duplicate of

2

In neither literature nor sources has this table been given a name, so we will refer to it like this.

3

The terms virtual andreal �le descriptors are also ours.

39

4.5 The Runtime Model of Pipe Jobs

� FI PREOPEN: this object is opened previously

� FI NFS: this object was opened via NFS

� FI RSC: this object was opened via remote system calls

� FI WELL KNOWN: well known socket connection with the Shadow

Important to note is that FI NFS and FI RSC are used to distinguish whether the real �le

descriptor refers to a local �le descriptor or a remote �le descriptor. Priv is also a bit�eld

that holds information on whether this object is opened for reading, writing or reading and

writing; this is used for checkpointing purposes only. If the object is a �le, Position stores the

o�set of the read/write pointer, also for checkpointing purposes only. Real fd holds the real

�le descriptor, either local or remote. Duplicating a �le descriptor is handled by duplicating

the virtual �le descriptor instead of the real �le descriptor. In that case, the FI-DUP bit is

set in the Flags �eld and Duplicate of refers to the virtual �le descriptor. Finally, if the

object is a �le, Name points to a string containing the absolute path name. To provide for

the same semantics of �les when mapping them to pipes, we need to alter some system calls.

Also, we need to tell apart the �le descriptors that refer to pipes and those that don't. So we

introduce a new bitmask called FI PIPE which will be used to mask the Flags �eld.

We now have all the information we need to discuss the open stub. The wisc version will

�rst see whether or not the object can be accessed via NFS. If this is not the case, it will

be performed by the Shadow. For our pipe jobs, the open system-call stub needs to ask the

Shadow �rst whether the name of the object is a �le that needs to be mapped on a pipe. For

this request we introduce the PSEUDO �le 2 pipe call. The Shadow checks whether or not

this is a �le that needs to be mapped on a pipe end and sends back either true or false. When

true, the Shadow also sends back the �le descriptor at which the pipe end is open at; next we

create a new virtual �le descriptor for it, which is the return value of the open stub. When

the pseudo system call returns false, the normal procedure is followed; �rst NFS, then the

Shadow. In the wisc version, creating a virtual �le descriptor is done by means of a function

MarkFileOpen, which takes as argument the name of the object and the real �le descriptor.

This function will search for an empty slot in the VUFDT, store the appropriate information

in it and return the o�set of the slot as the virtual �le descriptor. This mechanism is not

altered.

4.5.3 Read and Write System Calls

To preserve the semantics of �les, we need to alter the read and write system-call stubs.

Reading and writing to a �le are atomic actions; if they succeed, they succeed completely.

This is di�erent for pipes, for which, at least, the semantics of the read call allows that it

returns with fewer data read than requested; the programmer should make additional read

calls to read all the requested data.

40

The Design of Condor support for Pipe Jobs

The �le descriptor that is passed as an argument to the read and write system call-stubs is

virtual. The stubs should �rst test whether or not this virtual �le descriptor refers to a pipe.

If not, the stub will continue as usual, that is, when the virtual �le descriptor refers to a

local object, perform the local system call, otherwise perform the remote system call. If the

virtual �le descriptor does refer to a pipe, we should make as many local system calls as it

takes to either read or write all data. Furthermore, each write call on the pipe is chopped

into pieces of at most PIPE BUF bytes because these are guaranteed to be atomic for pipes.

The following pseudo C code will demonstrate how the read call is changed:

int

read(int v_fd, char* buf, int nbytes)

{

int r_fd,rval,count;

char *pc;

r_fd=map_fd(v_fd);

/* Start changed for pipe jobs */

if (is_pipe(v_fd))

{

count=0;

pc=buf;

do

{

rval=local_sys_call(r_fd,pc,nbytes-count);

count+=rval;

pc+=rval;

} while (rval>0 && count<nbytes);

rval=count;

}

else

{

/* End changed for pipe jobs */

if (is_local(v_fd))

{

rval=local_syscall_read(r_fd,buf,nbytes);

}

else

{

rval=remote_syscall_read(r_fd,buf,nbytes);

}

}

return rval;

}

41

4.5 The Runtime Model of Pipe Jobs

Note that local syscall read and remote syscall read are called with the real �le de-

scriptor and testing on the type of object is done with the virtual �le descriptor.

4.5.4 Other System Calls

Because we allowed �le-to-pipe mapping, we have a problem with the di�erences in semantics

between �les and pipes. For example, �les are randomly accessible objects, whereas pipes are

not. So, not all operations that may be performed on �les may be performed on a �le that is

mapped to the end of a pipe.

We shall give an overview of all system calls that manipulate with �les and pipes. We shall

make a distinction between system calls that take a pathname as an argument (this may

possibly be a �le) and system calls that take a �le descriptor as an argument (this may

possibly be a �le that is mapped on a pipe). This distinction is necessary because from

its name only, we do not know what kind of object we have. That's why system calls on

pathnames are performed remotely by the Shadow. Table 4.1 shows for all the a�ected

system calls on whether we should change (C) , not change (NC) or not allow (NA) them.

fcntl is marked for both "change" and "not allowed" because this call performs a variety of

operations on a �le descriptor; of these operations, some are allowed and the others are not.

What to do with the system calls on �le descriptors is quite obvious, as the object already

exists (we have a �le descriptor that identi�es it). For the other category, this decision is not

that simple due to the �le-to-pipe mappings. For example, suppose the user speci�ed that

the (input) �le "foo" should be mapped on a pipe, then �le "foo" does not exist; when the

process reads �le "foo" it actually reads a pipe. Now what should happen if the program that

opens �le "foo" �rst uses access to test for its existence? Should we change the call so that it

returns "it exists" or should we not change it and therefore it will return "it does not exist"

. For this reason, except for truncate, we mark these system calls as "change", which should

be interpreted as: "they possibly need to be changed

4

". Only truncate is not allowed as it is a

common operation on �les but is not allowed on pipes. The above list describes what should

be done with these system calls, consult the next chapter to see what we did with them.

When an attempt is made to perform a system call that is not allowed according the above

list, the user process which issued it should be terminated and therefore the whole job. Note

that there is a di�erence in handling the termination of a user process after detecting an

illegal system call. Illegal system calls on �le descriptors are detected by the Condor library,

whereas the detection of system calls on pathnames are detected by the Shadow.

4

It is clear that open must be changed.

42

The Design of Condor support for Pipe Jobs

System Call Description NC C NA

File Desc.

dup/dup2 duplicate �le desc. X

fchmod change permissions mode X

fchown change the owner X

fstat obtain statistics X

fsync move modi�ed data to disk X

ioctl perform special func. on device X

close close an object X

read/readv read / multiple read X

write/writev write / multiple write X

ock apply or remove advisory lock X

fcntl perform special function X X

ftruncate set �le to a speci�ed length X

lseek move read/write pointer X

Pathname

creat create new �le (it calls open) X

access determine accessibility X

open open an object given its name X

lstat/stat obtain statistics X

chmod change permissions mode X

chown change the owner X

unlink remove directory entry X

truncate set �le to a speci�c length X

Table 4.1 Table of a�ected system calls.

4.6 Serving Remote System Calls for Pipe Jobs

We already discussed the introduction of a few new pseudo system calls. These calls do not

introduce any di�culty for the Shadow; there will just be some extra entries in the table of

functions for remote system calls.

What still needs to be discussed is the issue of each user process needing its own working

directory. For this, the Shadow keeps a table of directories, one for each user process, which

will be initialised with the user process's initial working directories. For a single-process job,

when the user process is started for the �rst time, function MAIN issues a getwd to request

the initial working directory, immediately followed by a chdir to change to that directory.

This may seem very strange, but remember that the Shadow is very likely not running in

the initial working directory speci�ed by the user. Since chdir is performed remotely by the

Shadow, the Shadow will actually change to this directory. Also note that the Shadow Child

(which is performing the remote system calls) runs under the UID of the owner, preserving

normal unix �le-access permissions.

43

4.7 Summary of Changes

For pipe jobs, this behavior will be the same for each user process. Furthermore, any time the

Shadow performs a remote system call, it �rst changes to the working directory of the process

who made the call. This has the overhead of changing directory for each remote system call.

4.7 Summary of Changes

Below, we brie
y (only the major issues are mentioned) describe the changes for the Shadow,

the Starter and the Condor library which are needed for pipe jobs:

1. Shadow:

� serve each user process in its own working directory

� support the new pseudo calls: PSEUDO get job, PSEUDO pipe info,

�le 2 pipe and open std �le

� maintain the open pipe table

2. Starter:

� use the PSEUDO get job and PSEUDO pipe info to obtain information from

the Shadow

� set up the pipe connection for the user processes

� do not start user processes with the names of their standard �les as arguments

3. Condor Library:

� do not interpret the arguments as the names of the standard �le, but use

PSEUDO open std �le instead

� change open/read/write system-call stubs so that they may be used on pipes

� change some system-call stubs (such as lseek) so that they terminate the process

44

Chapter 5

The Design of Checkpointing Pipe

Jobs

In this chapter we will discuss checkpointing pipe jobs in general, furthermore, we will present

the design of a checkpoint/restart algorithm for pipe jobs that run as a whole on one machine.

Pipe jobs require a di�erent checkpointing technique than multiple-process jobs due to the

communication links. A summary of checkpointing communicating processes can be found in

[16].

Checkpointing is, in general, used for two purposes:

� Process recovery: In case of a machine crash, a process need not be restarted from

the very beginning, but it is restarted from a previous checkpoint. For process recovery,

the process needs to be periodically checkpointed.

� Process migration: Due to some policy (e.g., load balancing), it may be necessary to

migrate a process from one machine to another. For this, we only need to checkpoint

the process at migration time.

Although the checkpointing mechanism can be the same for both process recovery and pro-

cess migration, the recovery (restart) mechanism is not. For process migration, a possible

checkpoint/restart mechanism can be the following. First, the execution of the process is sus-

pended, next, the process is checkpointed and moved to a new machine. In the mean while,

we must deal with incoming messages addressed to the checkpointed process. On the new

machine, before the process is restarted from its checkpoint, the communication links with

other processes must be set up again and all pending messages must be redirected to the new

machine. Now, the process may resume execution. For process recovery, the checkpointing

45

5.1 The Centralised Approach

mechanism is closely related to the recovery (restart) mechanism. Processes are periodically

checkpointed and, after a failure, the failed process is rolled back to a previous checkpoint.

Due to this rolling back, missing and orphan messages may occur. The main issue in process

recovery mechanisms is to prevent these missing and orphan messages.

It is important to note the di�erence in at what moment a process is checkpointed. For

process migration, this is at the time we decide to migrate a process. In process recovery

we cannot predict when a failure will occur, therefore, periodic checkpointing is used . This

di�erence is important for the restart mechanism; since in process recovery rolling back is

required.

Now, let's examine the need for checkpointing in Condor. Two main goals of Condor are:

1. Condor only uses idle time: This means that whenever a user returns to his machine,

that machine is, by de�nition, not idle anymore. Therefore, Condor should migrate a

Condor job to another idle machine.

2. Jobs are guaranteed to complete: Normally, whenever a machine crashes, a user should

restart his programs from the very beginning. For jobs that run a long time, this

is unacceptable. Therefore, Condor periodically checkpoints a process and uses this

checkpoint to roll the process back to in case of a failure.

In current Condor versions, for both process migration and process recovery, periodic check-

pointing is used. This means that for process migration, a checkpoint/roll back mechanism

is used. It takes too long to checkpoint a process at migration time, instead, an older check-

point is used to restart. Until now, this was not a big problem because there was no inter-

process communication. However, inter-process communication is present in pipe jobs. In

the (near) future, Condor will be capable of taking a checkpoint at migration time, due to a

new checkpoint mechanism. We must keep this mind when designing checkpoint/restart and

checkpoint/rollback mechanisms.

5.1 The Centralised Approach

If we run a pipe job as a whole on one machine, see Figure 5.1, (i.e., centralised), we can

checkpoint the job as a whole, that is, checkpoint each process. For both process migration

and process recovery, it is required that all process are checkpointed. Using the checkpoints

of the individual processes we can restart the job on another machine. There are, of course,

additional actions to be taken in checkpointing the pipes. However, this is discussed in section

5.3; for now, it is enough to know that we need to checkpoint all processes and not a subset

of them.

46

The Design of Checkpointing Pipe Jobs

Process 4Process 5

Process 3

Process 1 Process 2

Remote Machine

Job

pipe

pipe

pipe

pipe

Figure 5.1: Running a pipe job on one machine.

Process 1 Process 2
pipe

Process 3

pipe

Remote Machine

Sub Job

Sub Job

Sub Job

Remote Machine

Remote Machine

Process 5 Process 4

pipe

pipe

Figure 5.2: Running a pipe job distributed on three machines.

5.2 The Distributed Approach

If we run a pipe job distributed among several machines, we have split up the job in sub jobs.

For example, in Figure 5.2 we run the same job as in the previous section, distributed on

three machine and thus there are three sub jobs; two sub jobs consist of two processes and

the third consists of only one process. Here, we can distinguish two kinds of inter-process

communication, that is, inter-machine communication and intra-machine communication.

For both process migration and process recovery, we do not need to make a distinction between

a sub job and its individual processes. For process migration we should migrate an entire

sub job, that is, all processes on the machine. For process recovery, we should recover all

processes that crashed on a machine, thus the sub job. Therefore, we only need to view a

distributed running job, as a job that consists of sub jobs with intra-machine communication.

These sub jobs may be connected through inter-machine communication with other other

sub jobs. For both process migration and process recovery we should checkpoint a sub job.

This checkpointing technique is the same as for a centralised running job. However, the

distributed approach has an additional problem, that is, how to deal with the inter-machine

communication. Dealing with the inter-machine communication is much easier for process

migration than for process recovery.

There is usually a tradeo� between checkpoint and roll back mechanisms. If one of them is

47

5.3 A Checkpoint/Restart Mechanism for Pipe Jobs: the Centralised Approach

cheap, the other will be expensive; this depends on:

1. amount of messages sent

2. number of processes involved

3. amount of disk space needed for storage

4. impact on the network

5. time needed for execution

The choice for a speci�c combination depends on the frequency of the invocation of the

checkpoint and the roll back mechanism. In a highly reliable environment where errors do not

occur often (and thus the invocation of the roll back mechanism), one would choose a cheap

checkpoint mechanism and thus an (probably) expansive roll back mechanism. Therefore,

it makes a di�erence whether we implement process migration with or without a roll back

mechanism. The number of invocations of the roll back mechanism will be much higher if we

implement process migration with a checkpoint/rollback mechanism. This a�ects the choice

of a speci�c combination of checkpoint/rollback mechanism.

5.3 A Checkpoint/Restart Mechanism for Pipe Jobs: the

Centralised Approach

The essential issue of checkpointing a pipe job is how to checkpoint the pipe connections

between the user processes. Condor has already a mechanism to checkpoint a running unix

process; we need not change this mechanism. However, before an individual process may be

checkpointed, all pipe connections it has with other user processes have to be checkpointed

as well. Therefore, we need to store the state of a pipe. We do this by emptying the pipe

and storing its data in a bu�er at the reader site of the pipe. When a user process reads

the pipe and there are data in the bu�er, we should �rst return these data; only when the

bu�er is empty, we will actually read from the pipe. After all pipes are emptied, the process

is checkpointed in the usual way.

In the literature, the initiator is the control or user process that initiates the checkpoint

algorithm. In our model, a user process will not act as the initiator; typically the initiator

will be the Starter.

48

The Design of Checkpointing Pipe Jobs

5.3.1 The Checkpoint Algorithm

Our checkpoint algorithm for pipe jobs is based on checkpoint coordination, which means

that all user processes coordinate in establishing a certain state before making an individual

checkpoint. This certain state is, in our case, the state in which all user processes know that

there will be no more writing on any pipe. When this state is reached, the processes are said

to be synchronised . Let us explain �rst how this synchronisation is done. For this purpose we

will use yet another pipe, which we will call the SYNC-pipe and which is setup between the

Starter and all user processes. The Starter opens this pipe for reading (when it starts up),

while the user processes should open it for writing (at every re-start); thus the SYNC-pipe

has one reader and as many writers as there are user processes. This pipe will never be used

to transfer any data, only to synchronise.

The outline of the algorithm is as follows:

1. The Starter sends all processes a prepare for checkpoint signal; next, it will perform

a read call of one byte on the SYNC-pipe. Since this pipe is empty, the call will block

until someone writes to it or until all writers have closed their pipe ends. Upon the

receipt of a prepare for checkpoint signal, a user process suspends its execution and

closes its end of the SYNC-pipe. When all user processes closed their ends of the SYNC-

pipe, there are no more writers and therefore the read call of the Starter will return

with zero bytes read. Now, all user processes are synchronised.

2. After the Starter returns from its read call, it checkpoints all user processes one by

one (in any order) by means of sending a checkpoint signal. Upon the receipt of a

checkpoint signal, a user process �rst empties all pipes it has open for reading. For

each pipe, these data are stored in a separate bu�er. It may now continue in taken a

checkpoint in the usual way, which will result in the user process sending itself a signal

to produce a core �le.

3. After the Starter sends a user process a checkpoint signal it waits until the user process

dies. In unix, a parent process is sent a SIGCHLD signal whenever one of his child

processes has died. Since the Starter is is the parent processes of all the processes in

a pipe job, it will be noti�ed when one of these child processes dies. The Starter will

then perform a wait system call to examine which child process died and the reason

it had died. If the child that died was sent the checkpoint signal and the child died

because of checkpointing, the Starter updates the user process' checkpoint �le, using

the old checkpoint �le and the core �le. Now the Starter sends the next user process a

checkpoint signal.

4. The newly created checkpoint �les are tentative until all processes have checkpointed,

then they will be permanent. After all tentative checkpoint �les are turned into perma-

nent ones, the checkpoint (of the pipe job) is said to be committed. Whenever an error

49

5.3 A Checkpoint/Restart Mechanism for Pipe Jobs: the Centralised Approach

User Process User Process
1 2

Pipe

Starter

SYNC-pipe

Figure 5.3: Situation just before checkpointing.

occurs before the checkpoint is committed, all tentative checkpoint �les are discard and

the initiator must invoke the roll back algorithm.

It is illustrative to demonstrate this mechanism with the next example. There are two user

processes that share a single pipe; process 1 writes to it whereas process 2 reads from it. The

situation just before the invokation of the checkpoint algorithm is shown in Figure 5.3; the

arrows show the read/write direction on the pipes.

The Starter �rst signals both process 1 and 2 a prepare for checkpoint signal and performs

the read call on the SYNC-pipe, see Figure 5.4 . Upon the receipt of this signal, process 1

and 2 both suspend their execution and close their ends of the SYNC-pipe. Since there are no

writers on the SYNC-pipe anymore, the Starter returns from its read call and synchronisation

is established, see Figure 5.5. Now, the Starter may checkpoint both processes as usual, so

�rst process 1 is sent a checkpoint signal, Figure 5.6. Since process 1 does not have any

pipes open for reading, it does not need to perform any special actions but can checkpoint

immediately, resulting in a core dump. The Starter will notice that process 1 has dumped

core and create a new checkpoint �le for the �rst process from its old checkpoint �le and the

core �le. Then, the Starter sends process 2 a checkpoint signal, Figure 5.7. Since process 2

has a pipe open for reading, it must empty the pipe before making a checkpoint. It therefore

reads the pipe until no more data are available and stores this data in a bu�er, Figure 5.8.

Now, process 2 will make a checkpoint in the usual way. The Starter will notice that process

2 dumped core and will create a new checkpoint �le for this process as well. The last action

will be to commit the checkpoint by making all tentative checkpoint �les permanent.

Before we go on with the discussion, two things need to be said. The �rst is how a pipe is

50

The Design of Checkpointing Pipe Jobs

User Process User Process
1 2

Pipe

Starter

SYNC-pipe

read prepare_for_checkpointprepare_for_checkpoint

Figure 5.4: Starter sends prepare for checkpoint signals.

User Process User Process
1 2

Pipe

Starter

SYNC-pipe

close close

Figure 5.5: Synchronisation is established.

51

5.3 A Checkpoint/Restart Mechanism for Pipe Jobs: the Centralised Approach

User Process User Process
1 2

Pipe

Starter

checkpoint

Figure 5.6: Process 1 is sent the checkpoint signal.

User Process
2

Pipe

Starter

checkpoint

Figure 5.7: Process 2 is sent the checkpoint signal.

52

The Design of Checkpointing Pipe Jobs

Pipe

buffer

read

User process 2

Figure 5.8: Process 2 empties its pipe.

emptied and the second on how to commit all checkpoint �les. When a user process receives

a checkpoint signal, it should empty all pipes it has open for reading. It could empty a pipe

by just performing one or more read calls on the �le descriptor of this already opened pipe.

However, since this pipe is open for blocking I/O (we already explained why), such a read call

might block if the pipe is already empty and there is some other process that has this open for

writing. This leads to a deadlock, that is, this user process is blocked, waiting for someone to

write or close this pipe and all other user processes are waiting for this user process to �nish

checkpointing. We must therefore either close all ends of the pipes that are open for writing

(in all user processes) or perform an non-blocking read call on this pipe. Let's discuss both

alternatives:

1. Close all write ends: This can only be done by an extra step (no synchronisation needed)

in which the Starter sends all user processes a close write ends signal; this signal

should be sent after synchronisation and before any process is sent a checkpoint signal.

Signals are guaranteed to be delivered and therefore, a read call on a pipe, in order to

empty it, will eventually return because in �nite time all write ends of the pipe will be

closed. It is important to note that closing the write ends of a pipe for this purpose

may only be done after synchronisation. Suppose we let a user process close all pipe

ends it has open for writing after it closes the SYNC-pipe, that is, after receiving the

prepare for checkpoint signal but before the synchronisation is accomplished. It now

may happen that another user process which not yet received the signal is woke up from

a blocking read call on one of the pipes because the �rst process just closed (the only)

write end of the pipe. This leads to the situation that the user process returns from

a read call with zero bytes read and therefore assumes that the writer has �nished its

computation.

2. Non-blocking read call: Since all pipe ends are created with the blocking option, we

must temporarily set the pipe end in a non-blocking state. Then, we can read blocks

53

5.3 A Checkpoint/Restart Mechanism for Pipe Jobs: the Centralised Approach

of data upon the pipe until the pipe is empty, that is, a read call returned zero bytes.

Due to the synchronisation, we know for sure that no more data will be written on the

pipe after we emptied it. After the pipe is empty, the pipe is reset to the blocking state.

Currently, the process will immediately die for checkpointing, in the future, a process

may continue after checkpointing. We reset the pipe's state to anticipate for the new

checkpoint mechanism.

We will use the non-blocking read call to empty a pipe, this saves the sending of an extra

signal to all user processes.

Committing the checkpoint �les is the last action of our checkpointing algorithm. If we copy

or move each new checkpoint �le to the old checkpoint �le, we destroy old current checkpoint

�les before we actually committed the checkpoint. A crash during the commitment would

result in a wrong set of checkpoint �les, therefore, after a crash we must check to see whether

we crashed during a commitment. Commitment takes place twice; once by the Shadow on the

initiating machine, and once by the Starter on the execution machine. A commitment by the

Starter is obvious since the Starter is the initiator of the checkpoint algorithm. A commitment

by the Shadow is needed because on the initiating machine a recent and consistent set of

checkpoint �les must be stored. Whenever a remote running job should vacate it must store

its most recent set of checkpoint �les on the initiating machine, then, after the job is assigned

a new machine to run on, this set of checkpoint �les is transferred to the new machine.

Therefore, the Shadow must check whether or not a set of checkpoint �les is consistent on the

initiatingmachine. Whenever a job is restarted, the Shadow must �rst check for an incomplete

commitment; if so, it must �nish this commitment before transferring any checkpoint �le. It

has no use to check whether a crash on the execution machine occurred during a commitment

and thus, the job is rolled back from the set of checkpoint �le that are stored on the initiating

machine. A check on the execution machine could be done by the Starter or perhaps even

the Startd, but suppose, in the worst case, the execution machine was down for days and the

job is already restarted from the set of checkpoint �les stored on initiating machine, then it

may be possible that the job has already �nished its computation. Therefore, such a check

would be useless.

5.3.2 The Rollback Algorithm

The algorithm used to roll back is quite simple. The latest set of checkpoint �les of all

user processes is always consistent. Therefore rolling back means that every user process

is restarted from its latest checkpoint �le. As usual, the Condor code of a user process

performs the needed actions to continue the user process from where it left of just before

checkpointing; only one extra action is needed: open the SYNC-pipe for writing in order to

be able to synchronise for checkpointing again.

In the previous chapter we stated that we would use unnamed pipes for our connections

54

The Design of Checkpointing Pipe Jobs

between the user processes, now it's time explain why.

If we use named pipes, we have some di�culties in restarting a pipe job. When a user process

is restarted it should reopen all pipes that were opened before checkpointing. Now suppose

we are restarting a process that had a pipe open for reading before it was checkpointed, then

this pipe has to be reopened. If we do that, the process is blocked until a writer opens the

pipe as well. Now, suppose that the other process, that writes to the pipe, has �nished its

computation just before checkpointing, then the pipe is never opened for writing and thus

we have a deadlock. We could also open the pipe with a non-blocking option, so that the

deadlock will not occur, but then there is the possibility that the process starts reading from

the pipe before the write process opened the pipe. As a consequence, the read process will

read return from its read call with zero bytes read, indicating EOF. These problems can be

solved in two ways. The �rst solution would be to add an extra synchronisation step: all

user processes are started and open their pipes with a non-blocking option, then they should

wait until all processes reached this state, then they may continue

1

. The other solution would

be to let the user process request information (at the Shadow) about how to open the pipe:

with either a blocking or a non-blocking option. Because the Shadow knows whether or not

the other process that shares the pipe has already �nished it will respond accordingly: if the

other process has �nished, with the non-blocking option; if the process has not �nished, with

the blocking option.

When using unnamed pipes, both ends of a pipe are created before a single user process is

started. The above mentioned problems will not occur so no extra actions are needed.

1

After they reset their pipes in a blocking state.

55

5.3 A Checkpoint/Restart Mechanism for Pipe Jobs: the Centralised Approach

56

Chapter 6

Implementation

This chapter describes how the pipe version is implemented. The implementation of both

multiple-process jobs and pipe jobs, required changes all over the source code of the wisc

version. We tried to keep the modi�cations and extensions as simple and clean as possible.

For the Shadow, this is was not an easy task as it was hard-coded to act as a server for one

process only. We would have liked to re-implement the Shadow but there was no time to do

this properly; instead we modi�ed it extensively.

Unless explicitly stated otherwise, everything that is described in this chapter refer to the

things we changed in the wisc version.

6.1 Multiple-Process Jobs

The changes for multiple-process jobs primarily a�ects the Shadow and the Starter. The

Shadow is implemented in old-style C (Kernighan and Richie), whereas the Starter is imple-

mented in C++.

6.1.1 The Shadow

In order for the Shadow to maintain connections with all user processes and with the Starter

(these are the clients), it keeps a table of communication channels, which is an array of the

following structure:

struct

{

57

6.1 Multiple-Process Jobs

XDR xdr_stream;

int sockfd;

int port;

} connection_t

Condor makes use of the XDR (eXternal Data Representation) library to send and receive

data. For each client, the port number, the �le descriptor of the socket connection and an

XDR variable is kept. The relationship between the three is that the socket connection was

made using the port number and the XDR stream uses the socket connection to send to and

receive data from.

The table is dynamically allocated when the Shadow Parent knows the number of clients;

thus after reading in the proc structure for the job. The number of client connections is

equal to the number of user processes plus one (the Starter has a separate connection, which

is stored at o�set 0 in this table).

Only the Starter in the wisc version had support for the PSEUDO new connection call to

request a new connection on behalf of the user processes. We have changed the Shadow in the

following way to support the call as well: When the Shadow Child starts up, it has only one

client, the Starter. The Starter will request for each user process a new socket connection, by

means of the PSEUDO new connection call. The Shadow Child will create a new socket

connection and sends back to the Starter the port number that goes with it. The Shadow

Child will then wait for the Starter to make a connection, by issuing a listen system call on the

socket. The Starter will issue a connect system call on the port number it received from the

Shadow Child and the connection is established. By connecting, the Starter created a socket,

which will be duplicated a �xed place, just before it starts the user process for which this

connection was made. When the user process starts, MAIN in the Condor library will create

an XDR stream with the socket it inherited from the Starter. When the Starter connects on

the Shadow Child's port, the Shadow Child will return from its listen call and is return a �le

descriptor for the established socket connection. With this socket, the Shadow also creates an

XDR stream and administrates this new client connection in the table of connections. The

socket connection that was used to listen for the Starter to connect is closed.

The Basic outline of our implementation of Shadow Child can be given with the next two

functions, written in pseudo C code:

Handle_System_Calls()

{

while(1)

{

number_pending=wait_for_requests();

for(i=0 ; i<number_of_client_connections ; i++)

{

58

Implementation

if (has_a_pending_req(i))

{

rval=do_REMOTE_syscall(i);

if (rval == -1)

{

handle_proc_termination(dead_user_proc);

}

}

}

}

}

What we see, is that the Shadow Child performs an in�nite loop in which it waits for requests.

wait for requests will perform a select system call on all the sockets of client connections

that are open. Selectwill block until, on at least one socket, new data arrive (the number of the

pending requests are returned for logging purposes only). Next, we loop over all clients to see

if it has a pending request. If so, the (pseudo) system call is performed by do REMOTE syscall.

Rval is not the return value of the performed system but a value specifying whether or not

the client has �nished its computation. Below, do REMOTE syscall is described with pseudo

C code. This function already existed but we changed it and gave it a parameter to identify

the client to perform the call for. All new pseudo system calls we introduced are implemented

in this function.

do_REMOTE_syscall(int i)

{

syscall_num=xdr_int(i);

switch(syscall_num)

{

case SYSCALL_open:

.....

.....

rval=1;

break;

case PSEUDO_new_connection:

.....

.....

rval=1;

break;

.....

.....

59

6.1 Multiple-Process Jobs

case SYSCALL_exit:

.....

.....

rval= 1;

break;

.....

.....

case PSEUDO_subproc_status:

.....

.....

rval= 1;

break;

.....

.....

default:

/* ERROR, unknown system call number */

}

return rval;

}

As is shown, �rst the number of the system call is read from the XDR stream. Normal

system calls have positive numbers, the pseudo system call have negative numbers starting

from -1. Except for the PSEUDO subproc status call, Do REMOTE syscall will return 1.

When a user process �nishes its execution, the last system call that it performs is exit , and

so when receiving a request for this call, the Shadow Child closes the connection with this

client. The Shadow Child will handle the termination of the user process when the Starter

issues a PSEUDO subproc status call with as argument, the id of the process that dies. A

client does not necessarily have to terminate via an exit call. When it terminates abnormally,

exit will very likely not be performed. The Shadow does notice, however, that it lost the

connection with such a client; in that case the Shadow marks the connection as being closed.

Eventually, the Starter will update the Shadow Child with information about the cause of

death.

6.1.2 The Starter

The changes for the Starter were minimal. Most important is that it needed to fetch the

information for all processes, instead of only one. All other support to host a multiple-

process job was already present.

60

Implementation

6.2 Pipe Jobs

In order to support pipe jobs, we changed the proc structure; as a consequence, we needed to

change all functions that referred to either the pipe table (we introduced a second name for

each pipe) or the initial working directory (we introduced per-process initial working direc-

tories). Because the proc structure moves around the system via XDR, the implementation

of xdr proc() that either reads a proc structure from or write a proc structure to an XDR

stream is also changed.

6.2.1 The Shadow

For pipe jobs, only the Shadow Child is changed. These changes are listed below:

1. support the new pseudo system calls: These pseudo calls we introduced are:

PSEUDO get job and PSEUDO pipe info (requests made by the Starter),

PSEUDO �le 2 pipe and open std �le (requests made by the Condor library). For

the �rst and the last pseudo call, the information is obtained from the proc structure,

for the second and the third call, we introduce a new table for the pipes, which is

described in the next item.

2. new data structure to administrate pipes: Note that the proc structure also contains

a table with information about the pipes. However, we need to store additional infor-

mation, so instead of spreading the information among two tables, we will create a new

one. We will refer to this table as the open pipe table (OPT); the format of an entry

from this table is shown below:

struct

{

int writer;

int reader;

char *w_name;

char *r_name;

int w_fd;

int r_fd;

}

The new information, are the �le descriptors at which both pipe ends are expected to

be open.

3. operations on the new data structure: The open pipe table is initialised when the Starter

issues the PSEUDO pipe info call. The value of the two �le descriptors in each entry

of the open pipe table are calculated as follows: if a process has n pipe ends, then they

61

6.2 Pipe Jobs

are assigned a value: base, base+1, ..., base+n, where base is the lowest �le descriptor

at which a pipe end may be open. After all �le descriptors are assigned a value, the

OPT (without the names of the pipes) is sent to the Starter.

The Shadow Child will consult the open pipe table for the PSEUDO �le 2 pipe call.

The format of this call is:

int rval=file_2_pipe(char *name, int *fd);

rval=0: object is a pipe, open at fd (*fd)

otherwise: object is not a pipe (*fd=-1)

The open stub will call this pseudo system call with the name of the object to be opened.

The Shadow Child will lookup in the OPT to see if the user process has a pipe end with

the speci�ed name. If so, it sets fd to the according value and returns 0, if not, it sets

fd to -1 and returns 1.

4. serving each client in its working directory: To serve each process in its own working

directory, the Shadow Child changes directory just before performing a system call.

Function do REMOTE syscall is changed in the following way:

do_REMOTE_syscall(int i)

{

/* start changed */

/* WorkDir: table of directories */

if (i>0)

{

chdir(WorkDir[i-1])

}

/* end changed */

syscall_num=xdr_int(i);

switch(syscall_num)

{

.....

.....

}

return rval;

}

Note that client 0, is the Starter and we need not change directory for it; we don't let

the Starter use relative pathnames.

62

Implementation

STARTGET_JOBGET_PROC

GET_EXEC SUPERVISE
supervise-all

DEFAULT

SUCCES

DEFAULT

SUCCES
spawn_all

get_proc

get_exec

get_job init

Figure 6.1: Starting the job.

6.2.2 The Starter

For the Starter, we took advantage of the fact that it is written in C++ and is implemented

as a �nite state machine . The new mechanism we introduced as part of starting a new job,

is implemented as states . When the Starter is started this will result in the state transitions

as are shown in Figure 6.1. In the appropriate states, the according pseudo system calls are

performed to obtain the information from the Shadow.

The wisc version administrates information about user processes in objects instantiated from

class UserProc. This class has a constructor which takes a pointer to a proc structure as

argument, which is used to copy information about this user process to local data members.

Class UserProc has methods for all necessary manipulations on the user process. For example,

if objUser is an object of this class, then objUser->execute() is used to start the user process;

the implementation of UserProc::execute will perform a combination of fork and exec system

calls. The basic idea of this administration is, of course, great. However, the extensions

that were made, are not. As described in section 3.3, the wisc version supports di�erent

types of jobs. Each type of job will use objects instantiated from class UserProc to store the

information about the individual user processes. As a consequence, the implementation of the

methods of class UserProc contains numerous if (type==...) then-else statements to possibly

do something di�erent for each type. This is de�nitely not the object-oriented (OO) way

of design and implementation. We did not implement pipe jobs in the manner as described

above. Instead, we have initiated the OO approach in implementing di�erent types of jobs.

Formally, class inheritance in the OO approach is only allowed when an is-a-special-kind-of

relationship exists between two classes. That is exactly the case with the user processes of

di�erent types of jobs. A process of a pipe job is-a-special-kind-o� a normal process. That is

why we inherit class PipeProc from class UserProc and override the methods of class Userproc

to perform the extra actions which are needed for processes that belong to a pipe job (such as

setting up the pipe connections). And that is why other types of jobs should be implemented

in the same way! (we will not list the de�nitions of either of the classes, the interested

reader is referred to the source code) Most important in the manipulation of a user process,

63

6.2 Pipe Jobs

is starting it; i.e., calling UserProc::execute(). In the wisc version, this is typically a method

that contained a lot of if(type=....) ... It is illustrative to look at the new method execute

(simpli�ed).

void

UserProc::execute

{

char *argv[2048];

char **argp;

char **envp;

int user_syscall_fd;

create_arglist(argv); (*)

envp=env_obj.get_vector();

initialise_child(); (*)

if ((pid=fork())==0)

{

manipulate_fdt(); (*)

install_signals(); (*)

do_exec(argv[0],argv,envp); (*)

}

cleanup_after_child(); (*)

state=EXECUTING;

}

The marked functions (*), introduced by us, are in fact virtual methods of class UserProc.

This allows for inherited classes, such as our class PipeProc, to override the behavior of

the base class. For example, method initialise child , which is called just before fork will do

nothing for class UserProc and return immediately, whereas for our class PipeProc, it will

setup the pipe connections for this user process.

We also introduced a new class: Job, which contains the information received from

PSEUDO get job call. This is also for a more intuitive OO approach when dealing with

job manipulations.

Due to the pipe jobs, the individual processes are arti�cially synchronised by the pipe connec-

tions. As a side e�ect, these processes terminate close after one another. The wisc version's

detection mechanism for a child's termination was not able to keep up with pipe jobs. In the

wisc version, signal SIGCHLD, which is sent by the kernel to a process whenever one of the

64

Implementation

SUPERVISE

CHECK_ALLCHECK_NEXT reaper
DEFAULT

check_next

PROC_EXIT

check_all

CKPT_EXIT
stop_all

HAS_CORE proc_exit

supervise_all

FOUND_NO_MORE

do_nothing

reaper

CHILD_EXIT

NO_CORE

dispose_one FOUND_ONE

do_nothing

Figure 6.2: New state transitions for reaping children.

process' children died, is associated with the asynchronous event child exit. Normally, when

the Starter has started all user processes, it remains in state supervise waiting for some asyn-

chronous event to occur. Whenever a user process dies, the state machine driver catches signal

SIGCHLD and generates event child exit. This causes a state transition to state proc exit

and then to either state send core or back to supervise depending on whether the child

dumped core or not

1

. The functions that are called along the way, transfer information back

to the Shadow, explaining the cause of death. From the time the SIGCHLD is catched until

the time the Starter gets back to state supervise, signal SIGCHLD is blocked. In unix, the

kernel associates one bit with each signal. When a process is sent a signal, the kernel sets

the appropriate bit. As soon as the user process handles this signal, by either catching or

ignoring it, the bit is cleared by the kernel. When we are handling the termination of a child

and signal SIGCHLD is blocked, all SIGCHLD signals that are sent by the kernel because

other child processes died, will be masked as if only one user process died.

In the wisc version, function reaper, which is called whenever event child exit occurs, will use

the wait system call to obtain the information about which child died, why it died, and how

many resources it consumed. Simply changing the reaper is not enough, as we need to follow

the above described path to handle the termination of a child. Therefore, we have added

states check all and check next and events FOUND ONE and FOUND NO MORE.

The death of a child that occurred during state supervise, causes a state transition to

check all next to proc exit back to check all. Figure 6.2 shows where these new states �t

in.

Also, the reaper is changed so that it will perform a non-blocking wait system call to see

whether a child has died or not. If another child did die when we handled the termination

1

Checkpointing is not considered.

65

6.2 Pipe Jobs

of the �rst, we will handle its termination as well, after that we have looped back to state

check next again. We will continue to loop this way until the reaper �nds no more dead

child processes. Then check all generates event found no more, which moves back to state

supervise. With these extra states and events, it doesn't matter how soon after one another

the children die; eventually, they will be reaped.

Finally, the wisc version passed each user process the names of the standard �les as arguments.

As proposed in the previous chapter, user processes in a pipe job are started without these

names as argument.

6.2.3 The Condor Library

The changes to the library were straight forward and no additional data structures were

necessary. In MAIN, we will call for each standard �le the pseudo system call

PSEUDO open std �le which has the next syntax:

int rval=open_std_file(int which, char *pathname, int *fd)

which : 0->stdin, 1->stdout, 2->stderr

pathname : name of the file

fd : file descriptor of inherited object (pipe/socket)

rval>0 : std file is already open at file descriptor (*fd)

otherwise : std file is a file, open it with name "pathname"

We shall not discuss here the system calls we changed, as there are some that were changed

at the Shadow side. So we shall discuss them all together in the next section.

The only thing that needs to be explained is how we force the termination of a process that

issues an illegal system call on a pipe (for instance, lseek). Note that "normal" illegal system

calls (such as, fork and exec) are detected by the Shadow Child. These system calls are

performed remote, as usual, and the Shadow has them marked as illegal. The system calls

we have introduced as being illegal, are not illegal in all circumstances; only when they are

applied to a pipe. Therefore, we cannot transfer the system call back to the Shadow, as

the Shadow cannot see whether or not a pipe is involved. Therefore, we will handle such

illegal calls in the Condor Library by sending ourselves a SIGILL signal. By default, this

signal causes the termination of the process and results in a core dump. The Starter will

detect that this is an abnormal death, reports it to the Shadow which will terminate the job.

Furthermore, the Starter moves the core �le back to the submitting machine. With the use of

a debugger, the user may examine the core �le and looking at the stack frame will tell which

illegal system call was attempting to manipulate which pipe.

66

Implementation

6.2.4 System Calls

We shall discuss here what happened with the list of a�ected system calls.

The system calls on �le descriptors are adjusted as proposed. For fcntl , we only allow the

F DUPFD operation to duplicate the �le descriptor, all other operations are illegal.

For the system calls on pathnames , we changed open and truncate. The reason we did not

touched the other calls is that these calls are not very likely to be performed on normal in-

and output �les. We prefer simplicity over generality.

6.3 Miscellaneous

There are a few details about the implementation of the pipe version that are worth mention-

ing. They are not speci�c for pipe jobs, but are a side e�ect of the project.

6.3.1 JobQueue

The JobQueue on each machine is implemented with the use of the dbm (DataBase Manager)

or ndbm (which administrates multiple databases) Dbm and ndbm provide for storage of

variable sized records in a �le and for basic database manipulations (such as fetch, store,

delete, etc.) on these records using a unique key . The maximum size of a record that can

be handled by (n)dbm is 1008 bytes. Condor uses it to store the proc structure of jobs.

Since the database �le may be accessed by more processes at the same time (for example, the

Shadow and condor submit), Condor uses the
ock system call to accomplish exclusive �le

access. When one process opens the JobQueue, the database �le is locked, so that another

attempt to open it will block until the �rst process closes it. For single-process jobs the

limitation of 1008 bytes was not a problem, but for multiple-process jobs the information

that needs to be stored in a proc structure will grow as the number of processes increases.

Soon enough we found out that a job of 4 processes with a couple of pipes could not be stored

because the size of the proc structure exceeded the limit.

After looking around we found that gdbm (GNU DataBase Manager) could be used as a sub-

stitute for (n)dbm. It does not impose a limit on the size of the records and most importantly,

it is compatible with n(dbm), so only replacing the libraries should be enough. Of course,

things are never as easy as people would like you to believe, so we had to change the following:

� gdbm: remove the LOCK NB options from the WRITE/READLOCK macros in sys-

tems.h (otherwise gdbm will not block when a �le is already exclusive open)

67

6.3 Miscellaneous

� condor:in job queue.c, change (3x) "Q->pagf" in "dbm pagfno(Q)" (actually, this is

redundant because gdbm will lock the �le for you)

� condor: change in all Make�les "DBM= -ldbm" in "DBM= -lgdbm" and add to the

LD FLAGS an additional -L option for the location of gdbm

6.3.2 Condor submit

Except for the changes necessary for the syntax of pipe jobs, we added a new option on the

command line. Condor submit may now be called with:

condor_submit [-c] [-q] job-description file

The -q (quit) option already existed and prevents condor submit to print a summary of the

job description after submission. We included the [-c] (check only) option to perform only a

check on the syntax and not actually submit the job. This extension is useful because:

1. Condor submit will create initial checkpoint �les for each of the executable �les, right

after interpreting the executable list. For jobs with large executable �les this may take

some time. Unfortunately, this time is wasted when later a syntax error is detected.

The user should then re-submit the job.

2. Condor submit does not actually parse the job description �le to see whether its contents

conforms to the syntax. Instead, it will scan for each command for a matching line,

for example, pipe speci�cations will be scanned by looking for a line that contains the

token "pipe". This means that "pipe =" will be regarded as a match, whereas "ppipe

= ..." will not, however, the latter is perfectly legal (it is simply looked over). So, in

the last case, instead of giving a warning, condor submits just concludes that no pipe

speci�cations are given! By running condor submit with -c, the user may �rst check the

listed summary on any mistakes.

Also, the names of the executable �les may now contain a path speci�cation (either relative

or absolute). Normally, Condor submit would search only in the current directory for the

executable �les.

6.3.3 Notifying the User

The user is sent a mail (by the Shadow Parent) whenever his job has terminated, explaining

the cause of the termination. We would like to inform the user at what time the job was

68

Implementation

submitted, at what time it was completed, what the resource usage was etc. Also, when the

process dies, we would like to know why it died.

Since we have more processes in the job, a new layout of this mail is required and an example

of it is shown below:

Your condor job 12.0

0 phnx

1 geom

2 snomux

exited normal.

Submitted at: Wed Aug 3 17:01:55 1994

Completed at: Wed Aug 3 20:09:00 1994

Real Time: 0 03:07:05

| Process | Remote User Time | Remote System Time | Total Remote Time |

|---------|------------------|--------------------|-------------------|

| 0 | 0 02:13:56 | 0 00:01:05 | 0 02:15:01 |

| 1 | 0 00:35:22 | 0 00:00:31 | 0 00:35:53 |

| 2 | 0 00:02:17 | 0 00:00:30 | 0 00:02:47 |

Local User Time: 0 00:00:32

Local System Time: 0 00:01:45

Total Local Time: 0 00:02:17

Leveraging Factor: 76.1

Virtual Image Size: 25104 Kilobytes

The �rst line shows us that the mail is about the job with id 12.0. Next the names of the

processes are listed (phnx, geom and snomux), followed by the cause of termination (in this

case the job exited normal). If process 1 died because of a segmentation fault, it would have

said: "Your condor job....., process 1 died because of signal 11".

Next, the time of submission and completion are listed. The subtraction of these two is the

real time (also called turn around time). Then, for each process, the remote user time, the

remote system time and the total of these two are listed. Because the Shadow has contributed

to the jobs execution, its user and system time and the total of these two are printed as well.

Finally, the leveraging factor, that is the ratio of remote CPU time to the local CPU time,

and the virtual image size (all three processes together) are listed.

69

6.3 Miscellaneous

70

Chapter 7

Tests and Results

To test the implementation of our pipe version of Condor, we have run three di�erent types of

jobs: jobs that consist of programs we wrote ourselves, jobs that consist of programs that are

used by the SMC group and jobs that consist of the program GREP. These jobs are described

in more detail in section 7.1.

We are of course interested in the performance of our pipe version of Condor. We shall

compare pipe jobs that run with and without Condor (this is the traditional way for the

SMC jobs to run). We also run the individual processes sequentially, that is, without pipes.

Because we need a job that will run for quite some time, we used an SMC job. The results

are presented in section 7.2.

In section 7.3 we give some numbers on Condor's overhead in hosting a job.

Furthermore, we are interested in the workload of pipe jobs, de�ned as: the number of pro-

cesses in the run queue

1

averaged over 1 minute. For normal single-process jobs, Condor

will suspend the job's execution when it detects that the workload exceeds some number in

the con�guration �le; this probably means that the user has returned to his machine. If

after a period of time (may also be con�gured), the workload is still larger than the limit,

Condor will vacate the machine by killing the job, otherwise the job may continue. Due

to multiple-process jobs and pipe jobs, the detection of runnable non-Condor processes (the

owner's processes) is not that easy. The workload of the Condor job may
uctuate depending

on the phase the job is in. In section 7.4 we therefore examine the workload of the SMC job.

1

This is the run queue of the unix kernel.

71

7.1 Jobs tested under the Pipe Version of Condor

7.1 Jobs tested under the Pipe Version of Condor

The following list shows the types of pipe jobs that have run successfully:

1. Jobs with complex pipe topologies. For this purpose we wrote a simple file copy

program with the following syntax:

filecopy n inputfile_1 inputfile_2 ... inputfile_n outputfile_1

outputfile_2 ... outputfile_n

This program copies input file x to output file x. Figures 7.1, 7.2 and 7.3 show

some of the pipe topologies tested. Below, the relevant parts of job description �les of

these jobs are listed:

###########################

Job description file: figure 7.1

Executable = p1 p2 p3

Pipe = p1 > output1 input1 > p2, p2 > output1 input1 > p3,

p1 > output2 input2 > p2, p2 > output2 input2 > p3,

p1 > output3 input3 > p2, p2 > output3 input3 > p3

###########################

###########################

Job description file: figure 7.2

Executable = p1 p2 p3 p4 p5

Pipe = p1 > output1 input1 > p2, p1 > output2 input2 > p2,

p1 > output3 input1 > p3, p1 > output4 input2 > p3,

p1 > output5 input1 > p4, p1 > output6 input2 > p4,

p2 > output1 input1 > p5, p2 > output2 input2 > p5,

p3 > output1 input3 > p5, p3 > output2 input4 > p5,

p4 > output1 input5 > p5, p4 > output2 input6 > p5

###########################

###########################

Job description file: figure 7.3

Executable = p1 p2 p3

Pipe = p1 > output1 input1 > p2, p2 > output1 input1 > p3,

p1 > output2 input2 > p2, p2 > output2 input2 > p3,

p3 > output1 input2 > p1

###########################

72

Tests and Results

p1 p2 p3

Figure 7.1: Job with �lecopy processes.

p1

p2

p5p3

p4

Figure 7.2: Job with �lecopy processes.

p1 p2 p3

Figure 7.3: Job with �lecopy processes.

73

7.2 Performance of Pipe Jobs

Note that Condor requires that the names of the executable �les are unique, therefore

p1, p2, p3, p4 and p5 in the above examples are all symbolic links to the executable �le

filecopy.

In the �rst two jobs, the �rst process reads from �les and the last process writes to �les.

The input and output �les of the processes inbetween are mapped to pipes. The last job

has a circular pipe connection. Process p1 only reads one �le, pipes the data to process

p2 which pipes them to process p3 which pipes them back to process 1 (because of the

pipe command: p3 > output1 input2 > p1). From there, data are piped to process

p2, next to process p3 which writes it to a �le. Note that this job may deadlock if the

input �le is too large. What then happens, is that before process p1 starts reading from

its pipe, process 3 is blocked because the pipe is full. For a small �le, process p1 is

ready copying �le 1 and starts reading the second before the pipe with process p3 gets

full.

2. To test real-life jobs, we have linked the programs in an SMC job with the Condor

library. This job consists of three processes, these are phoenix, geometry and snomux,

which run in a pipeline. Phoenix will start reading data from a �le or a tape, next,

its output is piped to geometry, next to snomux, which will create an output �le. The

relevant part of job description �le is listed below:

###########################

Job description file: SMC job

Executable = phnx geom snomux

Pipe = phnx > fort.10 fort.11 > geom,

geom > fort.10 fort.11 > snomux

###########################

3. Because the use of �lters is a common and powerful tool in pipe jobs, we have built

GNU's

2

GREP utility to run with Condor. Such programs are usually run as the �rst

or last stage of a pipe job. For example, GREP may be used to �lter relevant data

from the input before processing it. Also, compression programs may be used as a last

stage to compress (large) output �les. The steps that were needed to install GREP for

Condor are listed in Appendix C.

7.2 Performance of Pipe Jobs

To test the performance of our pipe version of Condor, we run the SMC job in the following

way:

2

GNU stands for GNU is Not unix.

74

Tests and Results

1. as a pipe job with Condor

2. as a pipe job without Condor (using named pipes)

3. as two jobs, one pipe job with two processes and one job with the third process; all

running with Condor

4. as three jobs, one for each process, all run sequentially with Condor

Comparing the �rst and the second situation, will show Condor's overhead in running pipes.

The �rst and the third/fourth situation will show the advantage of pipe jobs compared to

running the individual processes sequentially.

Before presenting the results, we will describe the SMC job and the test environment in more

detail. Phoenix (p1) will read from a magnetic tape that is physically mounted on the same

machine where the job will run (a Sun SparcStation 10) and produces about 130MB of output.

Geometry (p2) will read in this output and will produce output of about 160MB and �nally,

Snomux (p3) will will read in Geometry's output and will create an output�le of about 10MB.

Only when these processes are run sequentially, output is written to �les, when they are run

in a pipe job only the last output �le is created, the other output is redirected to the pipes.

Because of the size of the output �les, we had to use a �le system that was mounted at our

test machine, so the data are not sent over the network. Also, because the average time

of running one job was more than three hours, we have run each job only twice. We have

run these jobs at weekends only when nobody was using the machine. Because it is not our

intention to test the performance of remote system calls, we have run the job on the initiating

machine, as a consequence, the Shadow runs on the same machine as the pipe job. Finally,

because the logging facility of Condor decreases the performance, we turned o� all logging.

Table 7.1 shows the results of the execution time of the di�erent jobs. We use the piping

symbol (j) to indicate that processes are connected via a pipe, whereas a comma (,) is used

to denote that the process(es) run sequentially. For each job, the CPU time for each process

is listed. Because the Shadow is part of a Condor job, its CPU time is listed also. Next,

the Total time is listed, which is the summation of the CPU time of the individual processes

including the Shadow, followed by the turn-around time (Turn). Util. shows the system

utilisation (percentage); it is obtained by dividing Total by Turn, multiplied by 100. Note

that there were in fact 6 only di�erent condor jobs: 1 with three processes (p1 j p2 j p3), 2

with two processes (p1 j p2 and p2 j p3) and 3 with one process (p1, p2 and p3 individually).

We listed all possible combination of Condor jobs and calculated the times of the Shadow,

Total and Turn from the individual jobs.

From this table it is clear that there is only little performance decrease in running the job

with Condor in comparison to running the job without Condor: 173:35 CPU time against

171:07 CPU time. Also, when comparing a process that runs in a pipe job to a process that

75

7.3 Overhead of Condor

Type P1 P2 P3 Shadow Total Turn Util. (%)

Condor: 3 processes

p1 j p2 j p3 134:42 35:49 2:47 2:17 173:35 185:40 93

p1 j p2, p3 134:11 36:30 3:43 7:32 182:06 191:53 95

p1, p2 j p3 135:13 36:37 2:45 6:30 181:05 193:10 94

p1, p2, p3 135:13 37:27 3:43 11:37 188:00 201:17 93

Condor: 2 processes

p1 j p2 134:11 36:30 - 4:15 176:50 183:36 96

p2 j p3 - 36:37 2:45 2:45 42:07 45:20 93

p1, p2 135:13 37:27 - 8:29 181:09 193:00 93

p2, p3 - 37:27 3:43 7:52 49:02 53:27 92

Condor: 1 process

p1 135:13 - - 3:44 138:57 147:50 94

p2 - 37:27 - 4:46 42:03 45:10 93

p3 - - 3:43 3:07 6:50 8:17 82

Without Condor

p1 j p2 j p3 133:15 35:27 2:25 - 171:07 178:12 96

Table 7.1 Execution times of jobs with and without Condor (in minutes:seconds).

runs stand-alone, we see that the stand-alone job needs more time to �nish. Finally, note

that the Shadow consumes more CPU time when processes run separately.

7.3 Overhead of Condor

To get a better idea of Condor's overhead in starting a job and handling its termination, we

have run jobs that consist of empty processes, which do nothing and terminate immediately.

The steps taken by Condor that are included in the overhead are:

� parsing the job description �le

� creating initial checkpoint �les from the original executable �les

� storing the job's proc structure in the JobQueue

� negotiating with the Central Manager by the Schedd

� starting the Shadow and the Starter

� reading in the proc structure from the JobQueue

76

Tests and Results

� sending the proc structure and the checkpoint �les to the Starter

� starting the user processes

� detecting the death of a child and sending back information to the Shadow

� deleting the proc structure from the JobQueue after all processes have terminated

Condor's overhead is in fact the turn-around time of these jobs. The turn-around time is

measured as the di�erence of two time stamps: the �rst is made by condor submit immediately

when it starts up, the second is made by the Shadow Parent, just before it mails the user.

The only parameter that may in
uence this time is the size of the executable �le. Therefore,

we ran 100 jobs: the �rst 10 consist of one empty process, the next 10 of two, up until jobs

of ten empty processes. Since the turn-around times may largely di�er between jobs with

the same number of processes, we list not only the average time, but also the best and worst

times. The results are listed in Table 7.2; in Figure 7.4 the relationship between the number

of processes and the turn-around time is shown. The exact image size of the empty program

is 557056 bytes.

of processes best worst mean

1 0:17 0:44 0:29

2 0:32 0:45 0:34

3 0:27 0:41 0:35

4 0:39 1:12 0:47

5 0:44 1:29 1:00

6 0:49 1:22 1:11

7 0:59 1:34 1:19

8 1:04 2:21 1:26

9 1:17 2:28 1:36

10 1:47 2:05 1:54

Table 7.2 Turn-around time of jobs with empty processes (minutes:seconds).

7.4 Workload of Pipe Jobs

Condor uses the workload for the detection of the presence of non-Condor processes. For

single-process jobs, when Condor detects an higher workload than a certain limit, it concludes

that there are non-Condor processes running and thus migrates a Condor job.

For multiple-process jobs, we cannot use the same technique for the detection of non-Condor

processes. For a single-process job, we just assume that the workload of such a job will never

exceed a certain number. We cannot impose such a limit on multiple-process jobs, as the

77

7.4 Workload of Pipe Jobs

0.0 2.0 4.0 6.0 8.0 10.0
number of processes

20.0

40.0

60.0

80.0

100.0

120.0

tu
rn

 a
ro

un
d

tim
e

(s
ec

on
ds

)

Figure 7.4: Relationship between number of processes and the turn-around time (seconds).

workload may
uctuate during the run and depends on the number of processes. Therefore,

from the workload only, Condor cannot distinct the following two items:

1. Nearly all Condor processes are sleeping and there are running non-Condor processes;

2. all Condor processes are running and there are no non-Condor processes running.

In the �rst case, the Condor job should probably be migrated if these non-Condor processes

will continue running. In the second case, there are no non-Condor processes, so nothing

needs to be done.

To obtain information about the workload, we run a small script in the background when

running a pipe job, which will run every minute the unix program w. This program will list,

among other things, the workload. Figure 7.5 shows the workload of the SMC job with all

processes connected with pipes (p1 j p2 j p3). Just like the other pipe jobs, we have run the

SMC job on the submitting machine.

The outlier of the workload at the end of the job is caused by the Starter and the Shadow

Parent. Normally, these two processes are sleeping, but when a user process dies, they wake

up. Also, the Shadow starts the program mail to send the user mail when the job has

terminated.

78

Tests and Results

0.0 50.0 100.0 150.0 200.0
time (minutes)

0.0

1.0

2.0

3.0

w
or

kl
oa

d

Figure 7.5: Workload of an SMC job running with Condor.

79

7.4 Workload of Pipe Jobs

80

Chapter 8

Conclusions

We now present the conclusions related to our design and implementation of pipes in Condor

and to our design of a checkpointing mechanism for pipe jobs.

Running Pipe Jobs

We successfully implemented a piping facility in the Condor wisc version. We provided for

both a shell-alike piping mechanism and for a �le-to-pipe mapping, which allows jobs in

practical use to run without changing a single line of source code. We imposed only a few

restrictions on the pipe topology. We successfully built the GNU's GREP utility which may

now run with Condor. A whole range of �lters, compression programs and other utilities,

now becomes available for running in pipe jobs with Condor.

From the tests, we conclude that there is no signi�cant decrease in performance when running

pipe jobs with Condor. Running the job as a whole with pipes does result in a slightly shorter

turn-around time than running the processes sequentially. This does not show for long-running

jobs as they spend much more time consuming CPU power than performing I/O operations;

this even holds for jobs with large input and output �les as was shown with the SMC job.

However, a clear advantage of pipe jobs is that there is no need to store intermediate �les,

which keeps the �le system from �lling up. We did not consider the impact on the network,

but it seems clear that piping data from one process to another in the job instead of redirecting

these data back to the submitting machine, results in less network tra�c.

The issue of detecting the presence of non-Condor processes still needs to be solved. The

uctuation of the workload of multiple-process jobs and pipe jobs makes it very di�cult to

impose a limit on the workload for which such jobs may run. Therefore, Condor needs a new

mechanism to detect the presence of running non-Condor processes. To do this, it probably

needs to read kernel information about running processes. Unfortunately, this is platform

81

Conclusions

dependent.

Checkpointing Pipe Jobs

We have presented the design for a checkpoint/rollback mechanism for pipe jobs which run as a

whole on one machine. Our checkpoint mechanism does not rely on any order of checkpointing

user processes. We anticipated the new checkpoint mechanism, which is in the process of being

implemented in Wisconsin, for which a user process need not die for checkpointing. We expect

the mechanism that we designed will work �ne with this new checkpointing mechanism.

In the future, a checkpoint/rollback mechanism for pipe jobs which are distributed among

several machines is designed. We suggest that a distinction is made between checkpointing for

process migration and checkpointing for process recovery . For the �rst, only the processes that

need to migrate need to be checkpointed and these do not have to roll back (only restarted).

For the latter, probably more than one process needs to be checkpointed depending on the

message exchanges and processes may have to roll back. The reason for this distinction is

that rolling back is more expsensive, in both real time and CPU time, than restarting a job.

Also, process migration occurs more often than process recovery. It is therefore better to use

a checkpoint/restart mechanism for process migration and a checkpoint/rollback mechanism

for process recovery.

Note that before we can checkpoint a distributed pipe job, there should be a mechanism in

Condor to distribute a job. Currently, a Schedd is returned a name of one machine to run

the job on. Distributing a job requires a di�erent policy for scheduling jobs among available

machine. Also, a mechanism should be present for the Shadow to host such a job. First of all,

however, we should study what we gain from distributing a pipe job. It is not that obvious

that running a pipe job of say three processes will run three times as fast when running it

distributed on three di�erent machine as to running it centralised on one machine.

Possible Future Extensions to Condor

Finally, we have some hints on future extensions to the Condor system in general:

� Condor submit should use a di�erent parsing technique to detect badly formatted job

description �les. This could be implemented with the use of Lex (LEXical analyser)

and Yacc (Yet Another Compiler Compiler).

� The syntax itself could be changed to provide for a shell-alike syntax. The user may then

specify something like: Executable= p1 j p2 j p3 > output. This is much clearer for

simple jobs that consist of a single pipeline.

82

Conclusions

� The Starter should be changed to conform to the philosophy of Condor, that is, the

Starter should not request a proc structure for the per-process information but should

only request the relevant data. This could be done by means of one or more new pseudo

calls.

� The Starter should also be changed to take full advantage of C++: other types of jobs

should be implemented with new classes derived from class UserProc.

� Other utilities, such as compression programs, could be built for Condor to provide for

more powerful jobs.

83

Conclusions

84

Bibliography

[1] M.J. Bach, The design of the unix operating system, Prentice Hall, 1986.

[2] A. Bricker, M.J. Litzkow and M. Livny, "Condor technical summary," Version 4.1b,

University of Wisconsin - Madison, 1991.

[3] A. Bricker and M.J. Litzkow, unix manual pages: condor intro(1), condor(1), con-

dor q(1), condor rm(1), condor status(1), condor summary(1), condor con�g(5), con-

dor control(8), condor master(8), Version 4.1b, University of Wisconsin - Madison, 1991.

[4] X. Evers, A literature study on scheduling in distributed systems, TU-Delft, October

1992.

[5] A. Goscinski, Distributed Operating Systems - The logical design, Addison-Wesley pub-

lishing company, 1991.

[6] C. Hunt, TCP/IP network administration, Nutshell Series, O'Reilly & Associates, Inc.,

1992.

[7] B.W. Kernighan and D.M. Ritchie, The C programming language, second edition, Pren-

tice Hall, 1988.

[8] L. Lamport, L

a

T

E

X: A document preparation system, Addison-Wesley publishing com-

pany, 1986.

[9] L. Lamport, L

a

T

E

Xlocal guide for Nikhef, revised by Marcel Prins and Gertjan Stil, 1987.

[10] S. Le�er, M. McKusick, M. Karels and J. Quarterman, The design and implementation

of the BSD4.3 unix operating system, Addison-Wesley, 1989.

[11] M.J. Litzkow, "Remote unix, turning idle workstations into cycle servers," in Proceedings

of the 1987 Summer Usenix Conference, Phoenix, Arizona, 1987.

[12] M.J. Litzkow, M. Livny and M.W. Mutka, "Condor - A hunter of idle workstations," in

Proceedings of the 8th International Conference on Distributed Computing Systems, San

Jose, California, 1988, pp. 104|111.

85

BIBLIOGRAPHY

[13] M.J. Litzkow and M. Livny, "Experience with the CONDOR distributed batch system,"

Proceedings of the IEEE Workshop on Experimental Distributed Systems, Huntsville, AL,

1990.

[14] M.J. Litzkow and M. Solomon, "Supporting checkpointing and process migration outside

the unix kernel," Usenix Winter Conference, San Francisco, California, 1992.

[15] M.W. Mutka and M. Livny, "Pro�ling workstations' available capacity for remote ex-

ecution," in Proceedings of Performance '87, The 12th IFIP W.G. 7.3 International

Symposium on Computer Performance Modeling, Measurement and Evaluation, Brus-

sels, Belgium, 1987, pp. 529|544.

[16] P. van Sebille, Checkpointing in distributed systems, TU-Delft, Februari 1994.

[17] S. Talbott, Managing projects with make, Nutshell Series, O'Reilly & Associates, Inc.,

1986.

86

Appendix A

Process Structures

typedef struct {

/* job specific data */

int version_num; /* version of this structure */

PROC_ID id; /* job id (cluster and proc) */

char *owner; /* login of person submitting job */

int q_date; /* UNIX time job was submitted */

int completion_date; /* UNIX time job was completed */

int status; /* Running, unexpanded, completed, .. */

int prio; /* Job priority */

int notification; /* Notification options */

int image_size; /* Size of the virtual image in K */

char *env; /* environment */

char *rootdir; /* Root directory for chroot() */

char *iwd; /* Initial working directory */

char *requirements; /* job requirements */

char *preferences; /* job preferences */

struct rusage local_usage; /* accumulated usage by shadows */

/* process specific data */

char *cmd; /* a.out file */

char *args; /* command line args */

char *in; /* file for stdin */

char *out; /* file for stdout */

char *err; /* file for stderr */

struct rusage remote_usage; /* accumulated usage on remote hosts */

} V2_PROC;

typedef struct {

/* job specific data */

87

Process Structures

int version_num; /* version of this structure */

PROC_ID id; /* job id */

int universe; /* STANDARD, PIPE, LINDA, PVM, etc */

int checkpoint; /* Whether checkpointing is wanted */

int remote_syscalls; /* Whether to provide remote syscalls */

char *owner; /* login of person submitting job */

int q_date; /* UNIX time job was submitted */

int completion_date; /* UNIX time job was completed */

int status; /* Running, unexpanded, completed, .. */

int prio; /* Job priority */

int notification; /* Notification options */

int image_size; /* Size of the virtual image in K */

char *env; /* environment */

char *rootdir; /* Root directory for chroot() */

char *iwd; /* Initial working directory */

char *requirements; /* job requirements */

char *preferences; /* job preferences */

struct rusage local_usage; /* accumulated usage by shadows */

/* process specific data */

int n_cmds; /* Number of executable files */

char **cmd; /* Names of executable files */

char **args; /* command line args */

char **in; /* file for stdin */

char **out; /* file for stdout */

char **err; /* file for stderr */

struct rusage *remote_usage; /* accumulated usage on remote hosts */

int *exit_status; /* final exit status */

/* pipe specific data */

int n_pipes; /* Number of pipes */

P_DESC *pipe; /* Descriptions of pipes */

/* PVM specific data */

int min_needed; /* for PVM jobs */

int max_needed; /* for PVM jobs */

char pad[50]; /* make at least as big as V2 proc */

} V3_PROC;

88

Appendix B

State Transition Diagram of the

Starter

89

S
t
a
t
e
T
r
a
n
s
i
t
i
o
n
D
i
a
g
r
a
m

o
f
t
h
e
S
t
a
r
t
e
r

END

DO_Q
UIT

ALARM
stop_all

init
START

C
K

P
T

&
V

A
C

A
T

E

set_quit

TERMINATE

GET_EXEC
get_exec

SUPERVISE
supervise_all

su
sp

_a
ll

S
U

S
P

S
U

S
P

susp_all

SUSP

su
sp

_se
lf

SUCCESS
spawn_all

D
O

N
T_X

FE
R

terminate_all handle_vacate_req

CKPT&VACATE

N
E

W
_P

R
O

C
su

sp
_c

kp
t_

tim
er

UPDATE_ALL
update_all

DO_XFER

DIE
req_die

VACATE

spaw
n_all

S
U

C
C

E
S

S
S

U
S

P
susp_self

D
IE

D
E

F
A

U
LT

DEFAULT

CKPT&VACATEhandle_vacate_req

DIE

req_vacate

SEND_CKPT_ALL
send_ckpt_all

GET_PROC
get_procSUCCESS

re
ap

er

C
H

IL
D

_E
XI

Tstop_allCKPT_EXIT

reaper

C
H

ILD
_EXIT

SEND_STATUS_ALL
dispose_all

DEFAULT

UPDATE_WAIT
asynch_wait

DO_WAIT

UPDATE_ONE
update_one

S
U

C
C

E
S

S

FAILURE

V
A

C
A

T
E

D
IE

C
K

P
T

&
V

A
C

A
T

E
set_quit

S
U

S
P

susp_self

(T
E

R
M

IN
A

T
E

)

VACATE

DIE

U
P

D
A

T
E

_O
N

E

A
LA

R
M

cleanup

S
U

S
P

susp_self

TERMINATE_WAIT
asynch_wait

D
IE

unset_xfer

re
ap

er
C

H
IL

D
_E

X
IT

D
O

_W
A

IT

SEND_CORE
send_core

VACATE

susp_all

SUSP

(TERMINATE)

VACATE

req_vacate

DIEreq_die

req_vacate

re
q_

va
ca

te

re
q_

di
e

req_die

req_vacate

req_die

FAILURE
req_vacate

F
A

ILU
R

E

dispose_one

PROC_EXIT
proc_exit

HAS_CORE

di
is

po
se

_o
ne

N
O

_C
O

R
E

di
sp

os
e_

on
e

D
E

F
A

U
LT

E
X

IT
E

D
di

sp
os

e_
on

e

up
da

te
_c

pu

TRY_LATER

F
i
g
u
r
e
B
.
1
:
T
h
e
o
r
i
g
i
n
a
l
S
t
a
t
e
T
r
a
n
s
i
t
i
o
n
D
i
a
g
r
a
m

o
f
t
h
e
S
t
a
r
t
e
r
.

9
0

State Transition Diagram of the Starter

KEY

(name) Name of action routine

State not requiring handling of asynchronous events

State requiring handling of asynchronous events

Asynchronous Event
Synchronous Event

(name) Name of state

ASYNCHRONOUS EVENTS

DIE

VACATE

SUSPEND

CONTINUE

ALARM

CKPT&VACATE If user jobs running, checkpoint them. Then
if have checkpoint files, send them back.

If user jobs running, terminate them. Then
if have checkpoint files, send them back.

If user jobs running, terminate them. Then
don’t send back any checkpoint files.

If user jobs running, suspend them. Then
wait for a CONTINUE signal.

Resume normal operations after a suspension.

In SUPERVISE state, tell user job to checkpoint.
In VACATE state, kill user jobs forcibly (−9).

CHILD_EXIT User process exited.

FLAGS

QUIT Leave after completing and transferring checkpoints,
initially false

XFER Transfer checkpoint files before terminating,
initially true

Figure B.2: Notes on the State Transition Diagram.

91

State Transition Diagram of the Starter

92

Appendix C

Running GNU's GREP Utility

Building an application suitable for running with Condor is not always an easy task, so it is

illustrative to show what needs to be done for building GNU's GREP utility. This is a good

example, because it uses the mmap system call, which is not supported in any Condor version.

Furthermore, I compiled it with GNU's gcc which gives some trouble when linking with the

Condor library, which is compiled with Sun's cc. I will list all steps that were necessary to

install GREP for Condor; this may help you with installing your own applications.

First get the GREP distribution from your favorite ftp-site and install it as normal. Since

the Condor library is compiled with Sun's cc, it is best to compile other applications with cc

as well. I couldn't compile GREP with our (older) version of cc, so I used GNU's gcc (2.5.7)

instead. Installing GREP for normal use is no big deal, just run "con�gure", then "make".

To link with the Condor library, we should use a command like this

1

:

ld -o a.out -dc -e start -Bstatic /your_path/condor\rt0.o a.o b.o

/your_path/libcondor.a

Normally, this will do for most of your applications. However, since we compiled GREP's

source with gcc, we get the next message form the linker.

/bin/ld -dc -dp -e start -Bstatic -o grep.condor condor_rt0.o

grep.o getopt.o regex.o dfa.o kwset.o obstack.o search.o libcondor.a

ld: Undefined symbol

___main

___eprintf

1

Consult the man pages on condor submit.

93

Running GNU's GREP Utility

The unde�ned symbols are a consequence of compiling with gcc and linking with the Condor

library which is compiled with cc. What we should do is extract these symbols from GNU's

standard C library

2

. Instead of making one link command, we shall use incremental linking .

We extract these symbols with the following command:

/bin/ld -r -Bstatic -o undefined.o -u ___main -u ___eprintf

/your_path/libgcc.a

Note that we did not specify any object �les to link. We only undefined both main and

eprintf; as a result these two symbols are extracted from library libgcc.a. Now, we may

extend our original link command with this extra object �le. The following script shows the

complete actions involved:

CONDOR=/global/xwindow/condor_b/lib

GCCLIB=/global/xwindow/gcc-2.5.7/lib/gcc-lib/sparc-sun-sunos4.1/2.5.7/libgcc.a

UNDEFINES="-u ___main -u ___eprintf"

/bin/ld -r -Bstatic -o undefined.o $UNDEFINES $GCCLIB

/bin/ld -dc -dp -e start -Bstatic -o grep.condor $CONDOR/condor_rt0.o

grep.o getopt.o regex.o dfa.o kwset.o obstack.o search.o undefined.o

$CONDOR/libcondor.a

We have now an executable that is, in principle, suitable for running with Condor. Unfor-

tunately, the program will dump core once in a while. We are mailed by Condor that the

program was killed by signal 11 (SIGSEGV). Examining the stack frame stored in the core

�le shows the following

3

:

Program terminated with signal 11, Segmentation fault.

#0 0x15b8c in _doprnt ()

(gdb) bt

#0 0x15b8c in _doprnt ()

#1 0x124a0 in fprintf ()

#2 0x2718 in fillbuf ()

#3 0x2d48 in grep ()

#4 0x3864 in main ()

#5 0x25abc in MAIN (argc=3, argv=0xf7ffffa8, envp=0xf7ffffb8)

at ckpt_main.c:260

It shows that we died in doprntf, a function of the standard C library. The program

died because of a segmentation fault, which normally indicates that the program is buggy.

2

I admitt that this is tricky but it seems to work!

3

Fragment taken from gdb (GNU debugger).

94

Running GNU's GREP Utility

However, this is very unlikely and therefore we will use the log �les of Condor to �gure out

what went wrong. We learn from the Shadow's log that mmap is used by GREP, which

is not supported by Condor. It is not illegal however, Condor just ignores it. Looking at

GREP's Make�le shows us that GREP can be built without using mmap; just remove the

-DHAVE WORKING MMAP=1 option from the Make�le. Build GREP again and re-link it with the

Condor library. GREP will work �ne now.

95

