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Introduction 
 
EZoom is a utility that allows you to zoom in on the entire screen of a Sony 
Ericsson P800 and P900. It works transparently for all applications apart from the 
on-board camera viewfinder. Figure 1 shows EZoom running under the emulator 
zooming in 400%. 



 
 

Figure 1: EZoom running under the emulator; zooming 400%. 
 
The window on the right is the normal emulator window, the extra window on the 
left is EZoom emulating a target device’s screen and is what is displayed on a 
real P800/P900. EZoom boosts a zoom control, the red and the blue rectangular 
areas with the toolbar, which is transparently drawn (i.e. alpha-blended) on top of 
the normal user interface. The zoom control indicates: 

1. Zoom area: the red rectangle represents the original 208x320 pixels 
screen, the blue rectangle shows which part of the screen is being 
zoomed into. 

2. Zoom factor: the size of the smaller blue rectangle is proportional to the 
size of the red one, based on the zoom factor. A zoom factor of four (or 



zooming 400%) means the size of the blue rectangle is a quarter of that of 
the red one. 

Once EZoom is active you can dynamically increase and decrease the zoom 
factor using the camera and browser button. You can move the zoom control 
around by dragging it with the stylus and, similarly, you can move the zoom area 
around by dragging the smaller blue rectangle. The zoom control has a tool bar 
with a couple of buttons. One of these buttons is used to rotate the screen 90 
degrees clockwise allowing for the entire screen to be displayed in all four 
orientations. EZoom offers two scaling algorithms: a lower quality next neighbor 
scaling algorithm and a higher quality bilinear scaling algorithm. One of the tool 
bar buttons can be used to toggle between the two. Finally, EZoom can operate 
in two modes: smart update mode and continuous update mode, see the section 
on notifications of screen updates for an explanation of what they do. Below is 
another screen shot of EZoom showing off rotation and transparent wallpaper 
support. 

 
Figure 2: EZoom in 90 degrees rotation mode with a transparent wallpaper in its 

zoom control. 
 
Apart from the usual fun aspect in hobby projects such as EZoom, the reason I 
developed it was because I was intrigued whether it was technically possible to 
write an EZoom utility in the first place with just the public SDK for the P800/P900. 
Well, it turned out that with a little creativity it is :-) 

High level solution 



Current Symbian OS phones use a frame buffer to drive the screen. You can 
think of the frame buffer as a bitmap in which each pixel one-to-one represents a 
pixel on the screen. Changing a pixel in the frame buffer effectively updates the 
according pixel on screen. In Symbian OS, conceptually, the Window Server 
(WServ) owns the screen resource. In most scenarios only WServ updates the 
frame buffer directly, and thus the screen. It does this on behalf of its clients, 
typically GUI applications, as a result of their draw requests.  
 
EZoom’s high level solution is to create a second frame buffer, associate that 
frame buffer with the screen and, whenever the screen gets updated by WServ, 
copy the updated areas of the frame buffer owned by Wserv to the newly created 
one, scaling and rotating along the way. If done correctly, WServ is unaware that 
the frame buffer it updates is no longer associated with the screen. To avoid 
confusion, the two frame buffers are referred to as WServ's frame buffer and 
EZoom's shadow frame buffer. 
 
Problems to solve 
There are a few basic problems that need solving for the above solution to work: 

1. Multiple frame buffers: how to create a second frame buffer and how to 
switch between the two in software to drive the screen from either of them. 

2. Notification of screen updates: how can EZoom figure out which parts of 
WServ's frame buffer have just been updated. 

3. Pointer co-ordinate adjustment: apart from EZoom, no other software 
component is aware that the entire screen is scaled up and rotated. In 
order for the end user to interact correctly with the device using the pen, 
EZoom needs to transparently change pointer events before they are 
processed by applications. 

4. Emulator support: frame buffers are used on real hardware devices. The 
Symbian OS emulator, however, uses a WIN32 window to emulate a 
target device's screen. For efficient testing and debugging it would be 
convenient if EZoom could somehow run in the emulator environment. 

The next section describes the detailed solution for each of the above four 
problems. As part of solving the first problem, a device driver is needed. How to 
write one with just the public SDK is explained in the next section as well. 



Detailed solution 
 

Multiple frame buffers and switching between 
frame buffers 
Just like normal off-screen bitmaps, the frame buffer is nothing more than a piece 
of memory. Contrary to normal off-screen bitmaps, the frame buffer must be 
mapped to a piece of contiguous physical memory. The graphics hardware 
knows nothing about the virtual memory mapping set up by the operating system 
on the host CPU and therefore requires the frame buffer to be contiguous in 
physical memory.  
 
Virtual memory is the mechanism by which an operating system can protect 
software processes from harming each other. It allows for mapping identical 
virtual memory addresses in different processes to different physical memory 
addresses. In order for an operating system to use virtual memory, support from 
a hardware component referred to as the Memory Management Unit (MMU) is 
needed. The operating system and the MMU work together to manage the 
virtual-to-physical memory mappings for all processes on the device. The MMU 
manages physical memory in page-sized quantities (typically 4 KB) and the 
mapping between virtual and physical memory is stored in so called page tables. 
These pages tables are maintained by the operating system and are accessed 
by the MMU when translating virtual addresses to physical ones. Although the 
ARM CPU (all current Symbian OS phones have an ARM CPU) supports 
different page sizes, Symbian OS only uses page sizes of 4 KB. A further 
explanation on virtual memory management is beyond the scope of this paper. 
 
The ideal solution to solve the multiple frame buffer problem would be to allocate 
a second frame buffer, also contiguous in physical memory, and switch between 
the two to reprogram the graphics hardware with the physical address of the 
alternate frame buffer. There are two major obstacles to this approach: 1) you 
need to write a device driver to be able to access hardware, and 2) 
reprogramming the graphics hardware requires intimate knowledge of that 
hardware. Although the first problem of writing a device driver can to some extent 
be dealt with, as will be discussed later, the second problem is insurmountable 
because details of the P800/P900's hardware are simply not available.  
 
The approach I've taken in EZoom to solve the multiple frame buffer problem is 
inspired by one of the "tricks" I've learned in the PsiLinux project (running Linux 
on Psion devices such as Psion Series 5, 5mx and 7), which is to determine the 
physical address a virtual address is mapped to by interpreting the page tables 
directly. Once you have this ability, it's fairly trivial to extend it to modify the page 

http://www.psilinux.org/


tables to map a virtual address to a different physical address. 
 
In a nutshell, EZoom's solution is this: 

1. Allocate a page-sized (i.e. 4 KB) aligned buffer, referred to as the shadow 
frame buffer, of the same size as the WServ's frame buffer. This shadow 
frame buffer is, as per normal, guaranteed to be contiguous in virtual 
memory but not necessarily in physical memory. 

2. For each 4 KB page in the shadow frame buffer, determine to which 
physical address the start of the page is mapped to. 

3. Determine the physical address of WServ's frame buffer. Remember that 
that frame buffer is guaranteed to be contiguous in both virtual and 
physical memory, so it's enough to know the physical address of the first 
page. For completeness, the allocation of WServ frame buffer’s physically 
contiguous memory is typically done by the device driver for the graphics 
hardware on startup. 

 
Figure 3 illustrates the memory layouts of the both WServ's frame buffer and the 
shadow frame buffer. 

 
Figure 3: Memory layout of shadow and WServ's frame buffer. 

  
Switching between the two frame buffers goes like this: 



1. Remap the virtual address range of WServ's frame buffer to the physical 
memory of the shadow frame buffer. 

2. Remap the virtual address range of the shadow frame buffer to the 
physical memory of WServ's frame buffer. 

 
Figure 4 shows the memory layouts after switching the two frame buffers. 

 
Figure 4: Memory layouts of shadow and WServ's frame buffer after switching. 

 
As a result, updating the shadow frame buffer now updates the physical frame 
buffer associated with the screen. WServ's updates to its frame buffer are now 
stored in what used to be the shadow frame buffer's physical memory. Note that 
WServ is completely unaware of this remapping; it doesn't know nor care. 
 
The next two basic questions then become: how to determine the physical 
address given a virtual address and how to re-map a virtual address range to a 
different physical address range. The bad news is that the Symbian OS kernel 
does not provide this type of API; the good news is that I've done this sort of 
thing before in the PsiLinux project (running Linux on Psion devices). A further 
description on how precisely the page tables  are updated is beyond the scope of 
this paper; the interested reader is referred to the EZoom source code. Suffice to 
say that updating page tables must be done from kernel mode and thus from a 
device driver. The section writing a Symbian OS device driver describes how to 
do that. 

http://www.psilinux.org/
http://www.yipton.net/


Notification of screen updates 
EZoom has two modes of operation: continuous update mode and smart update 
mode. In continuous update mode, EZoom scales the entire screen 15 times a 
second regardless of whether the screen was updated in the first place. This was 
my original design idea for EZoom. Using the lower quality next-neighbor scaling 
algorithm resulted in acceptable performance (but only just), the higher quality 
bilinear scaling algorithm, however, rendered the system useless because a lot 
of CPU power and memory bandwidth is consumed by the scaling algorithm. For 
bilinear scaling to work, a better solution than this unconditional full-screen 
redraw at 15 Hz was needed. It turns out that with a bit of C++ peekery-pokery 
you can figure out which part of the screen WServ has updated.  
 
In the Symbian OS graphics framework, an object instantiated from 
CFbsScreenDevice represents the entire screen. Subject to its clipping region, 
all draw operations on this object unconditionally update pixels on the screen. 
There aren't many such CFbsScreenDevice objects in the system. Typically 
only WServ has one for its entire lifetime to update the screen, but, as part of the 
Direct Screen Access (DSA) design, each DSA client gets its own client-side 
CFbsScreenDevice object to update the screen directly without issuing WServ 
client-server draw requests. Conceptually, CFbsScreenDevice is the device 
independent representation of the screen. It relies on an object instantiated from 
CFbsDrawDevice, created by the user mode video driver (scdv.dll), to actually 
draw to screen in a device dependent way. All draw operations on 
CFbsScreenDevice call CFbsScreenDevice::UpdateRegion(const 
TRect& aRect) afterwards, where aRect is the bounding rectangle of the 
updated area. This method simply calls down to 
CFbsDrawDevice::UpdateRegion(const TRect& aRect) on its 
iDrawDevice data member.  
 
One of the software components in EZoom is a so called WServ animation dll, or 
anim dll for short. This component is also needed to transparently modify pointer 
events in the system. An anim dll is essentially a plug-in that gets loaded by 
WServ and thus runs in the context of the WServ process. As part of the API that 
WServ offers an anim dll plug-in, the anim dll can get a reference to the 
CFbsScreenDevice object owned by WServ, allowing it to directly update the 
screen in co-ordination with WServ.  
 
The EZoom anim dll implements a "hook" by replacing the CFbsDrawDevice* 
iDrawDevice data member in WServ's CFbsScreenDevice object by one of 
its own: an object instantiated from CHookedFbsDrawDevice which inherits 
from CFbsDrawDevice. For all the virtual methods in CFbsDrawDevice, 
CHookedFbsDrawDevice simply calls down on the according method of the 
original iDrawDevice data member in WServ's CFbsScreenDevice object. 
By placing this hook, EZoom gets notified 



via  CHookedFbsDrawDevice::UpdateRegion(const TRect& aRect) 
what parts of the screen have been updated by WServ. Needless to say that this 
is essentially a hack and goes against common software engineering rules. 
Fortunately, there is an exception to this rule which says that in war, love and 
software engineering everything is allowed. 
 
In smart update mode EZoom uses the hook mentioned in the previous 
paragraph to selectively redraw parts of the screen as they get updated. If 
EZoom learns a new area has been updated, it sets a timer for roughly 60 ms. 
Every redraw that occurs before this time-out gets added to the current redraw 
area by calculating the bounding rectangle of the current redraw area with the 
new one. When the timer fires, EZoom redraws the area on the screen 
corresponding to the accumulated rectangles of all redraws that occurred when 
the timer was running. The performance in smart update mode is excellent. 
When using the more CPU intensive, higher quality bilinear scaling algorithm you 
hardly notice any performance difference. Even in MP4 playback this difference 
is not really apparent. As a nice bonus, EZoom helps to reduce flickers in the 
user interface because it updates the screen in a more synchronized manner 
than the system does itself. 
 
One downside of the smart update mode is that it only detects the screen 
updates that occur within the WServ process. The types of screen updates not 
detected are the ones from DSA clients (and clients that scribble directly into 
video memory). Since the DSA framework creates a client-side 
CFbsScreenDevice object, the EZoom anim dll  running in the WServ process 
not only has no access to it but is also not aware that additional 
CFbsScreenDevice objects exist. It's because of those DSA clients that EZoom 
still needs to offer the continuous update mode feature.  
 
Continuous update mode has one drawback as well. It doesn't cater for the 
Camera viewfinder use case.  EZoom's solution to swap frame buffers by 
remapping virtual memory only affects software components because they write 
to the frame buffer via virtual memory. When the camera viewfinder starts, the 
camera hardware copies its viewfinder image frames directly to the video frame 
buffer. Because this is done from hardware and on the hardware level there is no 
concept of virtual memory, the viewfinder frames are copied directly in to the 
frame buffer associated with the screen. EZoom has no means to cater for this 
use case. 

Pointer co-ordinate adjustment 
Listed below is the basic pointer input handling in Symbian OS: 

1. For each pen down, pen up or pen drag event, the touch screen device 
driver adds a so called raw event, an object from class TRawEvent, to the 
system-wide event queue. This queue is a kernel data structure to which 



both kernel mode and user mode clients can add events. From user mode 
you would use UserSvr::AddEvent(const TRawEvent& anEvent). 

2. The kernel allows the first client who asks for it to become the exclusive 
owner of this queue; only that client can retrieve events from it. On startup, 
WServ is typically the first such client requesting ownership of this queue. 
WServ processes these raw events one-by-one, turning raw pointer 
events into window server pointer events; objects instantiated from class 
TWsEvent whose event type equal EEventPointer.  

3. WServ routes pointer events like this: 

• It passes the raw event (TRawEvent) to all so called WServ raw event 
handlers, asking each of them to consume the event. WServ stops routing 
the pointer event the moment one of them does. 

• If none of the raw event handlers consumed the raw event, WServ passes 
the window server pointer event (TWsEvent) to the window server client 
who had requested a global pointer capture, if any such client exists. 

• If there was no global pointer capture client, WServ passes the window 
server pointer event (TWsEvent) to the window server client with the 
highest Z-order window containing the co-ordinate of the pointer event. 

• If the window server client is a standard application, the pointer event is 
routed further, client side, by the application framework until it finds its way 
to the appropriate UI control (objects instantiated from CCoeControl-
derived classes). 

 
In order for EZoom to alter the pointer events based on the current zoom factor 
and rotation, it has to somehow hook into the above chain. It does so by 
implementing a so called WServ anim dll. These are dlls that get loaded by 
WServ in its own process. Typically anim dlls are used for server-side drawing 
which is faster than normal client-side drawing in, for example, a standard 
Symbian OS application. An anim dll can have the role of a raw event handler as 
described previously. As a raw event handler, EZoom gets to see raw pointer 
events very early on in the routing process, as described in the first bullet point in 
step 3. Changing pointer events is then just a matter of updating the TRawEvent 
which WServ passes to the raw event handler. Although strictly speaking this 
isn't the correct way to modify pointer events (the object is passed as a const 
TRawEvent& and EZoom simply casts away the const-ness), I never had a 
problem doing this. The correct solution would probably be to consume the raw 
pointer event (preventing it from further routing) and to generate a new raw 
pointer event with the modified pointer co-ordinate. A slight complication is that 
this newly generated raw event is passed by WServ to the anim dll again, so the 
latter has to have some logic to detect and ignore these. Needless to say that 
EZoom's current solution (simply update the raw event passed to its anim dll) is 
much simpler. 
 



Writing a Symbian OS device driver 
As part of the solution for multiple frame buffers and switching between frame 
buffers, EZoom needs to implement functionality to remap virtual memory in a 
device driver. The bad news is that, strictly speaking, you can't develop device 
drivers using public Symbian OS SDKs. You will have to sign up as a Symbian 
partner to get access to development kits that contain the relevant files. The 
good news is that some limited support for device drivers is possible using just a 
publicly available SDK. 
 
To develop a device driver you need two things: the kernel include files and the 
kernel library (EKERN.LIB). The first contain APIs that your device driver can 
use when running in kernel mode; the second is the library you need to link 
against if you use such API calls. The kernel include files and the WINS version 
of EKERN.LIB are shipped in the public SDKs for the P800/P900 so you can fully 
develop device drivers for WINS. This is only part of the solution of course, 
because you'll need a target device's EKERN.LIB as well. Unfortunately, that file 
is not available in the P800/P900 SDKs. The latter means that although you can 
compile a device driver for a P800/P900 device, you can't link it. As you will see 
in a minute, a limited work around is available. 
 
Let's take a closer at the EZoom device driver (EZoom.ldd). The API offered by 
EZoom.ldd is listed below. 

class RZoomDriver : public RBusLogicalChannel 
{ 
    ... 
    TInt LinearToPhysical(TLinAddr aLinAddr, TPhysAddr* 
aPhysAddr) ; 
    TInt RemapLinearAddr(TLinAddr aLinAddr, TPhysAddr 
aPhysAddr, ...) ; 
    ... 
}; 

 
It consists of two simple functions; the first one returns the physical address a 
given virtual address is mapped to; the second changes the physical address a 
given virtual address is mapped to to some other given physical address. I've 
ignored some minor details in the above API as they are not relevant to this 
discussion. As described in the section on multiple frame buffers and switching 
between frame buffers, the implementation of these two API calls are reused 
from the PsiLinux project. Very conveniently, the implementation doesn't require 
any support from the kernel, so no functions are needed from EKERN.LIB. The 
only EKERN.LIB functionality needed by EZoom.ldd is the generic device driver 
infrastructure support to be able to offer an API to user mode clients. 
 
From a software point of view, a Symbian OS device driver is just a dll that 



exports one function: a factory method which returns an object instantiated from 
a class derived from DLogicalDevice (whereas in user mode, classes whose 
instantiated objects are allocated on the heap start with a capital C, in kernel 
mode those classes start with a capital D). In the case of EZoom, that derived 
class is called DLddZoom and it is defined like this: 

class DLddZoom : public DLogicalDevice 
{ 
public: 
    ~DLddZoom(); 
    DLddZoom(); 
    virtual TInt Install(); 
    virtual void GetCaps(TDes8&) const {} 
    virtual DLogicalChannel* CreateL(); 
}; 

 
The object instantiated from DLddZoom represents the device driver itself. A 
user mode client which has opened this device driver now needs to create a 
channel with it. That results in DLddZoom::CreateL() being called. This virtual 
method returns an object instantiated from a class derived from 
DLogicalChannel. EZoom's version is called DChannelZoom and is defined 
like this: 

class DChannelZoom : public DLogicalChannel 
{ 
public: 
    DChannelZoom(DLogicalDevice * aDevice); 
    ~DChannelZoom();                   
protected: 
    virtual void DoCancel(TInt){}; 
    virtual void DoRequest(TInt, TAny*, TAny*){}; 
    virtual TInt DoControl(TInt aFunction, TAny* a1, 
TAny* a2); 
    virtual void DoCreateL(TInt /*aUnit*/, CBase* 
/*aPdd*/, const TDesC* /*anInfo*/, const TVersion& 
/*aVer*/){}; 
}; 

 
The virtual method DoControl(...) is used in EZoom.ldd to implement the 
earlier mentioned two API calls. 
 
All of the above is needed as part of the basic implementation of a Symbian OS 
device driver. Although none of them call functions in EKERN.LIB 
explicitly,  exported methods from that library are still needed. For example, when 
the compiler generates code for DLddZoom::DLddZoom(), it needs to generate 
code to call the constructor of the base class: 



DLogicalDevice::DLogicalDevice(), a method exported by EKERN.LIB. 
Without doing anything extra, the EZoom device driver will compile correctly for a 
target build, but will fail linking with a handful (around 10) unresolved methods 
from EKERN.LIB such as DLogicalDevice::DLogicalDevice(). The work 
around is to include dummy implementations for them in the EZoom driver 
source code. For example, the constructor for DLogicalDevice can simply be 
left empty: 

DLogicalDevice::DLogicalDevice() 
{ 
} 

 
In fact, almost all of the other unresolved method can be left empty as well or be 
given a trivial implementation such as returning KErrNone. After I managed to 
build EZoom.ldd for a target device I noticed that all worked fine apart from the 
fact that I couldn't unload the driver. After debugging a bit under the emulator, I 
figured that DLogicalChannel::~DLogicalChannel() needed more than 
just an empty implementation; changing it to the following solved the problem: 

DLogicalChannel::~DLogicalChannel() 
{ 
    iDevice->iOpenChannels--; 
} 

 
As a result, I am now the proud owner of a fully functional Symbian OS device 
driver that can be built with just the public SDK. 

Emulator support 
Most of EZoom's functionality is trivially supported in the emulator, including 
writing a device driver. The biggest issue in the emulator version of EZoom is the 
emulation of WServ's frame buffer, the shadow frame buffer and switching back 
and forth between them. All three issues are addressed below: 
 
Emulating WServ's frame buffer 
 
The "trick" I've used in my ports of Doom and Mame to get access to WServ's 
frame buffer is to do the following: 

TScreenInfoV01           screenInfo; 
TPckg<TScreenInfoV01>    sI(screenInfo); 
 
UserSvr::ScreenInfo(sI); 

 
Afterwards, screenInfo.iScreenAddress contains the virtual address of 
WServ's frame buffer. This works fine on a target device, where there is a frame 



buffer, but doesn't work in the emulator, where the screen is ultimately emulated 
using a WIN32 window. Although UserSvr::ScreenInfo() returns the WIN32 
windows handle (HWND) of the emulator window and as such you have access to 
its pixels using normal WIN32 APIs, this isn't a satisfactory solution. The pixels 
you'll get that way are in the color depth of the WIN32 window rather than the 
color depth of the emulator (EColor4K for P800 and EColor64K for P900).  
 
It turns out there is another way to get access to the emulated frame buffer in 
WINS. The Symbian OS 2D graphics framework implements support for 2D 
hardware acceleration, allowing certain 2D graphics operations to be performed 
in hardware rather than in software. Although the P800 and P900 don't support 
2D graphics acceleration in hardware, the Symbian OS emulator does. For 
example, the Symbian OS GDI bitblt implementation will use the 2D hardware 
bitblt operation if it is supported, otherwise it performs the bitblt itself in software. 
The emulator version of the 2D graphics video driver implements the 2D 
accelerated bitblt using WIN32's GDI bitblt (after all, the emulated screen is a 
normal WIN32 window). Furthermore, the 2D graphics framework has the notion 
of so called hardware bitmaps (RHardwareBitmap), which are bitmaps that can 
be accessed by the 2D graphics hardware. Basic properties of a hardware 
bitmap are: virtual address, physical address, color depth and size. Just like 
other R-based classes, RHardwareBitmap is nothing more than a handle; this 
allows multiple clients to share a hardware bitmap. A client which knows the 
handle of an existing hardware bitmap may open it by handle. If there is a 2D 
graphics hardware accelerator on the device then the 2D graphics framework 
assumes WServ's frame buffer is represented by a hardware bitmap with 
handle -1, and that this well known hardware bitmap is associated with the 
CFbsScreenDevice used by WServ to update the screen.  
 
To get access to the emulated frame buffer in WINS, you can do this: 

TAcceleratedBitmapInfo  info; 
RHardwareBitmap         hardwareBitmap(-1);  // -1 is 
the well known handle for WServ's frame buffer 
 
User::LeaveIfError(hardwareBitmap.GetInfo(info)); 

 
Afterwards, info.iAddress refers to the frame buffer, and 
info.iDisplayMode refers to the system's color mode. This is the same value 
that was used to  configure the emulator in z:\system\data\wsini.ini. 
 
Emulating switching between the two buffers 
I've played with the idea to somehow update the pixels in the emulator's frame 
buffer as returned by RHardwareBitmap::GetInfo(). After a while, I figured 
it wasn't worthwhile to be that faithful in emulation. A much simpler solution is to 
create a separate WIN32 window of the same size as the emulator screen 
(208x320 for P800/P900) and to draw the contents of the shadow frame buffer in 



it from a background WIN32 thread. This separate window is what the screen on 
a target device would look like; the emulator window itself still reflects what's 
stored in WServ's frame buffer. 
 
It's not too difficult to use WIN32 functionality from within the emulator. Update 
your .mmp file like this: 

• Add .cpp files with WIN32 functionality in the normal way in your .mmp file 
using a SOURCE statement 

• Add WIN32 libraries like this: 

START WINS 
WIN32_LIBRARY     gdi32.lib user32.lib 
kernel32.lib 
END 

In .cpp files that use both WIN32 and Symbian OS functionality, include header 
files in the order show below: 

#define OEMRESOURCE  
#include <windows.h>         // Windows first 
#include <e32def.h>            // Symbian OS stuff next 
#include <e32std.h> 
#include <e32base.h> 
#include <gdi.h> 

 
An example of mixing WIN32 and Symbian OS functionality is shown in the code 
snippet below. WIN32 pointer events received in the extra WIN32 window are fed 
back into the Symbian OS environment by adding them to the system-wide event 
queue. 

TInt32 CEmuZoomDevice::HandleWin32Event(HWND aHwnd, 
TUint aMessage, TUint aWParam, TInt32 aLParam) 
{ 
    switch (aMessage) 
    { 
        ... 
        ... 
        case WM_LBUTTONDOWN: 
        { 
            TRawEvent    event; 
            event.Set(TRawEvent::EButton1Down, 
LOWORD(aLParam), HIWORD(aLParam)); 
            UserSvr::AddEvent(event); 
            iMouseDown = ETrue; 
            return 0; 
        } 



        ... 
        ... 
    } 
 
    return ::DefWindowProc(aHwnd, aMessage, aWParam, 
aLParam); 
} 

 

Graphics operations 
All of the previous sections describe the functionality needed to allow EZoom to 
do what it ultimately needs to do: scale and rotate the entire user interface, and 
draw the Zoom control transparently on top of it (i.e. alpha-blended). Although I 
could have probably used existing Symbian OS graphics routines to do all of that, 
it's much more fun to roll out your own. Apart from the fun factor, Symbian OS 
doesn't provide functionality to do all three (scaling, rotation and alpha-blending) 
at the same time in one operation. It's therefor probably more efficient to write 
some specialized routines to combine all three operations into one. The usual 
downside applies here of course, by rolling out your own low-level graphics 
routines, you need to implement them for each display mode you wish to support. 
In P800 and P900 the display modes are respectively RGB444 and RGB565. 
Since both use 16 bits per pixel, much of EZoom's graphics functionality can be 
shared between the two color modes but operations on the individual red, green 
and blue sub-pixel values need to be implemented separately. All three 
operations are described below. A description on how to combine the three 
operations into one is beyond the scope of this paper, the interested reader is 
referred to the EZoom source code. 

Scaling 
Figure 5 shows a simplistic picture of what 400% zooming in EZoom means. 
Given the original 208 x 320 pixel image on the left, you select a 104 x 160 
subset of that image (a quarter of the surface area of the original one) and blow it 
up four times to fit a 208 x 320 pixel image again (shown on the right).  

http://www.yipton.net/


 
Figure 5: Zooming in 400%. 

 
The problem is that in the 104 x 160 pixel image you don't have enough pixel 
values to draw a 208 x 320 pixel image. The solution is to interpolate the missing 
pixels, which is the mathematical method to determine a value in-between known 
discrete values. There are many different interpolation algorithms out there. The 
two I've chosen to implement are: next neighbor and bilinear interpolation. The 
first is fast but results in a pixelated image (especially at higher zoom levels 
because existing pixels are simply duplicated), the second yields better image 
quality at the expense of CPU and memory bandwidth. 
 
First, some straightforward math: 

Call the width and height of the P800 and P900 screen respectively w and h 
Call the width and height of the zoomed in area respectively w' and h'  
Given a zoom factor of x % (400 in the above example) then it holds that: 

(1)     w' * h' * (x / 100) =  w * h 
Maintaining aspect ratio means: 

(2)     w = (208 / 320) * h  and  w' = (208 / 320) * h'  
Combining (1) and (2) results in: 

(3)   (h' * (208 / 320)) * h' * ( x / 100) = (h * (208 
/ 320)) * h  

Which can be reduced to: 
(4)    h' = (10 * h) / sqrt (x) 

Substituting (2) in (4) gives the width: 
(5)    w' = (10 * w) / sqrt (x) 

 
Once the user has set EZoom to a given zoom factor, the above formula (4) and 



(5) calculate the size of the zoomed in area.  
Figure 6 shows how the zoomed in area is interpolated to get the additional 
pixels. The blue bubbles represent the known pixel values in the zoomed in area; 
the green ones represent the pixels that we need to calculate. 

 
Figure 6: Interpolation. 

Some more math: 
The distance between the known pixels (the blue ones) is by definition (1,1). 
The distance between the interpolated pixels (the green ones) is called 
(dw', dh') 

(6)   dw'  =  w' / w   and    dh'  =  h' / h 
Substituting (4) and (5) in (6) gives: 

(7)    dw' = 10 / sqrt(x)     and    dw' = sqrt(x) / 10 
 
Note that when zooming in, dw' and dh' are values between 0 and 1. The 
above formula allows us to traverse all interpolated pixels like this: 

for (float y = 0  ;  y < h  ;  y += dh') 
   for (float x = 0  ;  x < w  ;  x += dw') 
      pixel = InterpolatePixel(x, y); 

 
Given this basic algorithm to traverse all interpolated pixels, Figure 7 shows for a 
single such pixel how it relates to its surrounding four known pixel values. 



 
Figure 7: Interpolation of a single pixel. 

 
The question now is, given the four known pixel values p0-p3, and dx and dy, 
what should the pixel value of the interpolated pixel be? Next neighbor and 
bilinear interpolation are only two examples of  how to calculate that pixel value. 
They are described below. 

Next neighbor interpolation 
EZoom's implementation for next neighbor scaling looks something like this: 

pixel =  (dx < 1) ? ((dy < 1) ? p0 : p2) : (dy < 
1) ?  p1 : p3); 

 
It says that if the position of the green pixel coincides with one of the blue ones, 
the green pixel's value is that of the blue one, otherwise its value is that of blue 
pixel p0. This algorithm essentially duplicates existing pixel values and results in 
a very pixelated image. 
 
Bilinear interpolation 
In bilinear interpolation, three interpolation steps are performed. First, horizontally, 
the pixel values in-between p0 and p1, and p2 and p3 are interpolated. Then 
these two temporary pixel values are interpolated vertically. The linear 
interpolation between two pixels is done on the individual sub-pixel values and is 
therefore color mode dependent. The code snippet below shows the one for 
RGB565 which is used on the P900. 

pixel = InterpolatePixelRgb565 
( InterpolatePixelRgb565(p0, p1, dx * 100), 
InterpolatePixelRgb565(p2, p3, dx * 100), dy * 100); 
 
TUint16 InterpolatePixelRgb565(TUint16 aPixel0, TUint16 
aPixel1, TInt aScale) 



{ 
        // linear interpolation of pixel aPixel0 and 
aPixel1 
    TInt scale0 = iModel.iScaleTab[100-aScale]; 
    TInt scale1 = iModel.iScaleTab[aScale]; 
    TUint    b = ((((aPixel0 & 0x001f) * scale0) + 
((aPixel1 & 0x001f) * scale1)) >> 10) & 0x001f; 
    TUint    g = ((((aPixel0 & 0x07e0) * scale0) + 
((aPixel1 & 0x07e0) * scale1)) >> 10) & 0x07e0; 
    TUint    r = ((((aPixel0 & 0xf800) * scale0) + 
((aPixel1 & 0xf800) * scale1)) >> 10) & 0xf800; 
    return (TUint16) (r | g | b); 
} 

 
EZoom uses some simple fixed point arithmetic to prevent floating point 
multiplications for each sub-pixel value. Symbian OS phones don't have 
hardware floating support so these operations are CPU intensive. As can be 
seen by comparing the code snippets of the two scaling algorithms, bilinear 
scaling requires much more operations to calculate an interpolated pixel. The 
benefit, though, is that the image quality is much higher than using next neighbor 
scaling.  
For completeness, the source code above isn't a strait copy of the EZoom 
implementation; I've made some changes to make it more in line with the 
concepts and definitions described in this paper.  

Rotating 
EZoom supports all four rotation modes, internally referred to as rot0, rot90, 
rot180 and rot270. Given the screen size TSize iScreenSize and the 
rotation iRotation, the following method shows how to rotate a single point. 

TPoint TZoomModel::Rotate(const TPoint& aSrc) const 
{ 
    switch (iRotation) 
    { 
        default: 
        case ERot0: 
            return aSrc; 
            break; 
        case ERot90: 
            return TPoint((iScreenSize.iWidth - 1) - 
aSrc.iY, aSrc.iX); 
            break; 
        case ERot180: 
            return TPoint((iScreenSize.iWidth - 1) - 
aSrc.iX, (iScreenSize.iHeight - 1) - aSrc.iY); 



            break; 
        case ERot270: 
            return TPoint(aSrc.iY, (iScreenSize.iHeight 
- 1) - aSrc.iX); 
    } 
    return TPoint(0, 0); 
} 

 

Alpha-blending 
Alpha-blending is no longer a novelty, most systems provide support for it. For 
EZoom I have reused the alpha-blending routines from my EDoom project, which 
in turn had borrowed it from the WINE project. Alpha-blending operates on the 
sub pixel values as well, below is the implementation for RGB565: 

TUint16 CZoomDrawer::AlphaBlendRgb565(TUint16 aPixel0, 
TUint16 aPixel1, TUint8 aAlpha) const 
{ 
    TUint    t = aPixel1 & 0xf800; 
    TUint    m1 = (((((aPixel0 & 0xf800) - t) * 
aAlpha)>>8) & 0xf800) + t; 
    t = aPixel1 & 0x07e0; 
    TUint    m2 = (((((aPixel0 & 0x07e0) - t) * 
aAlpha)>>8) & 0x07e0) + t; 
    t = aPixel1 & 0x001f; 
    TUint    m3 = (((((aPixel0 & 0x001f) - t) * 
aAlpha)>>8) & 0x001f) + t; 
    return (TUint16) (m1 | m2 | m3); 
} 

 

EZoom software components 
Listed below are EZoom's software components and, for each for them, a short 
description of the functionality it provides. 

EZoom.app 
• Provides the user interface for EZoom's user configurable options and 

saves them to an .ini file. 
• Provides start and stop menu options to respectively start and stop the 

zooming operation. Starting the zooming operation is done by loading the 
ZoomAnim.dll, sending it a configure command followed by a start 
command. 

http://www.winehq.org/


• Dynamically reconfigure the zooming operation by sending ZoomAnim.dll 
a configure command. 

• Provides the help user interface. 

ZoomAnim.dll 
• Figures out which part of the screen WServ has just updated by placing a 

hook in-between WServ's CFbsScreenDevice and its 
CFbsDrawDevice. 

• Implements the actual zooming by: 
o Creating a second frame buffer called shadow frame buffer. 
o Remapping WServ's frame buffer and the shadow frame buffer so 

that they refer to the other frame buffer's physical address range 
(using the EZoom.ldd API below for each 4 KB page in both 
buffers). 

o Scales the entire screen 15 times a second in continuous update 
mode. 

o Scales only those parts of the screen as they get updated by 
WServ in smart update mode (using the above mentioned hook).  

• Provides the user interface for the zoom control which is transparently 
drawn on top of the screen. 

• Controls the zooming process: rotation, change between smart update 
and continuous mode and change image quality. 

• Implements bitmap routines for scaling (bilinear and next neighbor), 
rotation and alpha-blending (for transparency). 

• Transparently changes pointer events based on the current zoom level 
and visible area on screen so that system is not aware of the scaling and 
rotation. 

• Zooms in and out when respectively camera and browser button are 
pressed; also implements key repetition. 

• For WINS, emulates the shadow frame buffer by creating a separate 
WIN32 window controlled in a separate WIN32 helper thread. 

• Implements start, stop and configure commands which are issued by 
EZoom.app. 

EZoom.ldd 
• Provides an API to return the physical address given a virtual address. 
• Provides an API to change the physical address a given virtual address is 

mapped to to some other physical address. 

 



Conclusion 
EZoom is an utility that zooms in and rotate the entire user interface of a 
P800/P900, and draws a zoom control transparently on top. Although not the 
most useful utilities out there, its implementation uses some interesting 
techniques that stretch the boundaries of what people think is possible an a 
Symbian OS phone. Examples are the ability to create a second frame buffer and 
associate that with the display, to transparently change pointer events in the 
phone, to filter WServ's screen updates and to write (very simplistic) device 
drivers using the public P800/P900 SDK.  
 
I potentially could have used Symbian OS' built-in graphics routines in EZoom, 
but decided not to. Apart from the fun factor to write your own, it also allowed me 
to combine the scaling, rotation and alpha-blending operations into one operation, 
which never hurts from a performance point of view. 
 
Tinkering with EZoom's design concepts, implementing it and even writing this 
paper have all contributed to the fun and satisfaction factor of this hobby project. 
If you have any suggestions for challenges similar to the ones in EZoom then feel 
free to drop me a line. 
 
 
 
Want to be kept informed of new articles being made available on the 
Symbian Developer Network? 
Subscribe to the Symbian Community Newsletter. 
The Symbian Community Newsletter brings you, every month, the latest news 
and resources for Symbian OS. 
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